
www.manaraa.com

University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Masters Theses Graduate School 

5-2010 

Fire History from Dendrochronological Analyses at Two Sites near Fire History from Dendrochronological Analyses at Two Sites near 

Cades Cove, Great Smoky Mountains National Park, U.S.A. Cades Cove, Great Smoky Mountains National Park, U.S.A. 

Ian C. Feathers 
The University of Tennessee, Knoxville, ifeather@utk.edu 

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes 

 Part of the Physical and Environmental Geography Commons 

Recommended Citation Recommended Citation 
Feathers, Ian C., "Fire History from Dendrochronological Analyses at Two Sites near Cades Cove, Great 
Smoky Mountains National Park, U.S.A.. " Master's Thesis, University of Tennessee, 2010. 
https://trace.tennessee.edu/utk_gradthes/619 

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and 
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: 
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu. 

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F619&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/355?utm_source=trace.tennessee.edu%2Futk_gradthes%2F619&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


www.manaraa.com

To the Graduate Council: 

I am submitting herewith a thesis written by Ian C. Feathers entitled "Fire History from 

Dendrochronological Analyses at Two Sites near Cades Cove, Great Smoky Mountains National 

Park, U.S.A.." I have examined the final electronic copy of this thesis for form and content and 

recommend that it be accepted in partial fulfillment of the requirements for the degree of 

Master of Science, with a major in Geography. 

Henri D. Grissino-Mayer, Major Professor 

We have read this thesis and recommend its acceptance: 

Carol Harden, Sally Horn 

Accepted for the Council: 

Carolyn R. Hodges 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



www.manaraa.com

To the Graduate Council: 

 

 I am submitting herewith a thesis written by Ian Corbett Feathers entitled “Fire History 

from Dendrochronological Analyses at Two Sites near Cades Cove, Great Smoky Mountains 

National Park, U.S.A.”  I have examined the final electronic copy of this thesis for form and 

content and recommended that it be accepted in partial fulfillment of the requirements for the 

degree of Master of Science with a major in Geography. 

 

 

 

     Henri Grissino-Mayer, Major Professor 

 

 

 

 

We have read this thesis and  

recommend its acceptance: 

 

 

Carol Harden 

 

 

 

Sally Horn 

 

 

 

   Acceptance for the Council: 

  

  

 Carolyn R. Hodges 

Vice Provost and Dean of the Graduate School 

 

 

 

 

 

 

 

 

 

(Original signatures are on file with official student records.) 



www.manaraa.com

FIRE HISTORY FROM DENDROCHRONOLOGICAL ANALYSES AT 

TWO SITES NEAR CADES COVE,  

GREAT SMOKY MOUNTAINS NATIONAL PARK, U.S.A. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

A Thesis Presented for the  

Master of Science Degree 

The University of Tennessee, Knoxville 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ian Corbett Feathers 

May 2010 



www.manaraa.com

ii 

 

Copyright © 2010 by Ian Corbett Feathers 

All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

iii 

 

DEDICATION 

 
This thesis is dedicated to the Great Spirit, my family, my friends, and my home, 

 the majestic and supernal mountains of Southern Appalachia. 

 

 

 

 

 

 

“As I walk the trail of this life in the fear of the cold rain, grant oh Great Spirit, that I may walk 

as you intended and follow the way of your land.” - Cherokee Prayer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

iv 

 

ACKNOWLEDGEMENTS 

 I wish to thank Dr. Henri Grissino-Mayer for his enthusiasm, discipline, and passion 

related to all things in geography.  Dr. Grissino-Mayer was my faculty advisor as an 

undergraduate, and provided me with abundant opportunities in the Laboratory of Tree-Ring 

Science.  His support and requirements pushed me to become a better writer and scientist, both in 

the field and in the lab.  I also want to thank the members of my thesis committee, Dr. Carol 

Harden and Dr. Sally Horn, for their enthusiasm about geography and their interest and 

contribution to my knowledge of the natural world.       

 I would also like to thank my friends and colleagues of the Laboratory of Tree-Ring 

Science for help in the field and in the lab.  Special thanks go out to Saskia van de Gevel, Philip 

White, Lisa LaForest, Christine Biermann, John Sakulich, Mark Spond, Ruby Muñoz, Grant 

Harley, Yanan Li, Josh Brown, and Alexander Poole.  I would especially like to thank my wife, 

Sarah Pemberton Feathers, for her love, encouragement, and hard work in the field.  Sample 

collections would not have been completed without her support.   

 I would like to thank Great Smoky Mountains National Park for supporting this research. 

I would also like to thank Rob Klein, fire ecologist, and Robert Wightman, staff ranger, for their 

cooperation and interest in my research.  Robert Wightman was particularly helpful in tracking 

down land acquisition records, and Rob Klein’s collaboration has allowed greater understanding 

of fire ecology within the Park. 

 

 

 

 



www.manaraa.com

v 

 

ABSTRACT 

 Fire, logging, livestock grazing, and insect outbreaks are disturbances that have 

significantly influenced both the historic and present fire regimes.  The composition and 

structure of vegetation communities within Great Smoky Mountains National Park (GSMNP) 

have likely changed in response to these disturbances.  Two study sites (CRX, the near site, and 

CRT, the far site) were chosen along the Cooper Road Trail based on topographic separation, 

presence of mixed oak-pine communities, presence of fire-scarred yellow pine trees, and 

GSMNP land acquisition records.  To quantify and evaluate fire regimes, individual fire histories 

were developed for each site from fire-scarred yellow pine trees, and two 1000 m
2
 (0.1 ha) study 

plots were established for vegetation surveys.  Fire history analysis yielded mean fire intervals of 

6.2 years at the near site, 3.4 years at the far site, and 3.2 years when combined.  Spatial analysis 

showed significant differences in fire activity between study sites.  Temporal analysis showed 

significant differences in mean fire intervals between the pre-settlement (1720–1818) and post-

settlement periods (1819–1934).  Superposed epoch analysis showed the over-riding influence of 

climate at these sites.  At the near site, trees displayed greater species diversity, larger diameter, 

and older age.  Eastern white pine, pitch pine, red maple, and black gum were the dominant 

species.  At the far site, tree species diversity was lower and trees were generally younger.  

Mixed oak-pine communities are succeeding to a canopy dominated by shade-tolerant, fire-

sensitive species such as eastern white pine and red maple.  Without fire disturbance, yellow pine 

communities will cease to regenerate, as will oak species that prefer a fire-maintained habitat. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Fire was once a common disturbance throughout the mixed temperate forests of the 

southern Appalachian Mountains (Harmon 1982, Pyne 1982, Jantz 2002).  Fires ignited by 

lightning or thermal combustion occurred naturally, while humans also used fire as a tool for 

agriculture and land management (Cohen et al. 2007, Fowler and Konopick 2007).  The presence 

of species such as Table Mountain pine (Pinus pungens Lamb.), pitch pine (P. rigida Mill.), and 

shortleaf pine (P. echinata Mill.), all of which are fire-dependent and fire-tolerant, indicate 

evolution in an environment disturbed by fire (Richardson 1998).  Thick bark, self pruning 

branches, and serotinous cones are morphologic traits that constitute adaptations to fire.  The 

proliferation of these species was likely influenced by fluctuations in climate and the 

anthropogenic use of fire (Abrams 1992, Delcourt and Delcourt 1997, Jurney et al. 2004).   

Both Native Americans and Euro-American settlers used fire as a tool to manipulate the 

landscape (Fowler and Konopick 2007, Jurgelski 2008).  It had a variety of uses and benefits for 

both groups.  Fire was the most commonly used tool to clear the landscape for agriculture and 

grazing, to increase berry yield and herbaceous ground cover, drive wild game, and maintain the 

understory for travel (Pyne 1982).  Many residents of the southern Appalachians believed that 

fire removed pests and pathogens and maintained an open, herbaceous understory (Shea 1940, 

Pyne 1982, Jurgelski 2008).  Now, in combination with intensive land-use, fire suppression, 

drought, and southern pine beetle (Dendroctonus frontalis Zimm.) infestation, yellow pine 

woodlands in the southeast are in decline, resulting in over 161,900 ha (400,000 acres) lost since 
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2000 and an estimated 202,300 ha (500,000 acres) more in 2007 (South and Buckner 2003, 

USFS 2008).  Concurrent with this decline, current projections of forest succession indicate a 

decrease in yellow pine regeneration (Lafon et al. 2007, Waldron et al. 2007).   

Research also shows that xeric and sub-xeric forest communities are shifting in 

dominance to more mesophytic, shade-tolerant species such as red maple (Acer rubrum L.), 

eastern white pine (P. strobus L.), black gum (Nyssa sylvatica Marsh.) and eastern hemlock 

(Tsuga canadensis Carr.) (Nowacki and Abrams 2008).  Fire regimes (defined by fire frequency, 

seasonality, severity, intensity, extent, and type) also show significant changes, resulting in lower 

frequency and greater severity (Nowacki and Abrams 2008, FRCC 2008).  This response is 

likely caused by forced departure (e.g. fire suppression) from the historical range of variation 

(HRV) (Morgan et al.1994).    

Land use also significantly alters both fire regimes and forest composition.  Intensive 

logging practices remove the dominant canopy trees and cause seedling and sapling mortality, 

resulting in poor species regeneration among herbaceous cover and woody stems (Duffy and 

Meier 1992).  Large scale clear-cutting causes heavy land denudation, increasing rates of soil 

erosion and sediment transport to riparian areas (Pyle 1988, Swift et al. 1993).  Logging 

activities and overgrazing may also cause soil compaction, causing changes in bulk density and 

restricting the ability of the soil to retain moisture (Gordon 2004).  Removal of the tree canopy 

also causes subsequent drying of fine fuels and increases the probability of fire (Frelich 2002). 

 

1.2 Objectives 

The purpose of this research was to compare and contrast the differences and similarities 

of fire regimes and vegetation dynamics between two sites.  My research questions include:   
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 Are fire regimes similar between topographically separated sites with similar 

vegetation?   

 Are fire regimes similar between the pre-settlement (1720–1818) and post-

settlement (1819–1934) periods? 

 Do vegetation composition and age structure vary between the two sites?   

 What is the current status of fire regimes and vegetation composition in the 

western portion of Great Smoky Mountains National Park (GSMNP)?  

 What are future trends of succession in mixed oak-pine forests of the western 

portion of GSMNP? 

To answer these questions, I developed quantitative fire histories from both sites, 

calculated importance values from surveyed tree species, calculated percentage values of 

seedling/sapling tallies, measured duff depth, and measured volumetric water content of the soil.  

These data made possible inferences of the past and present fire regimes in the western portion of 

GSMNP.      

 

1.3 Significance 

 Fire regimes in the southern Appalachians should be characterized by low-severity 

surface fires of low to medium intensities (FRCC 2008).  Fire suppression efforts, however, have 

likely reduced yellow pine regeneration in GSMNP (Harmon 1982, Harrod et al. 2000).  When 

coupled with southern pine beetle outbreaks, fire suppression has increased fuel loads far beyond 

historic proportions, making it likely that future wildfires will be characterized by greater 
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intensity and severity (Lafon et al. 2007, Waldron et al. 2007).  Logging efforts in the late 19
th

 

and early 20
th

 centuries cleared canopy vegetation and allowed greater abundance of mountain 

laurel (Kalmia latifolia L.) and rhododendron (Rhododendron maximum L.) (Monk et al. 1985).  

These ericaceous shrubs act as flammable ladder fuels that may increase the severity and spatial 

extent of future wildfires.  In 2007, it was reported that prescribed burns in GSMNP crossed fire 

breaks due to excessive ladder fuels caused by southern pine beetle and years of fire suppression 

(Rob Klein, personal communication).  Many areas in GSMNP are now considered “at risk” of 

stand-replacing wildfire.  

Mixed oak-pine forests also provide critical habitat for whitetail deer (Odocoileus 

virginianus Zimm.), wild turkey (Meleagris gallopavo L.), black bear (Ursus americanus Pallas), 

ruffed grouse (Bonasa umbellus L.) and the endangered red-cockaded woodpecker (Picoides 

borealis Vieill.) (Walters 1991, Land and Rieske 2006, NPCA 2008).  Without prescribed burns 

and efforts to rehabilitate habitat, these species may lose important food reserves.  Increasing 

temperatures and drought stress will likely exacerbate the likelihood of beetle-related mortality 

and the susceptibility of forests to uncontrollable wildfires (Richardson 1998, Waldron et al. 

2007).   

 My research provides insight on historical conditions of fire regimes and the subsequent 

departures of these fire regimes from historical patterns in GSMNP and in the southern 

Appalachian Mountains.  Furthermore, my research shows differences in fire regimes between 

periods of settlement, which has long been questioned by other researchers and forest managers.  

This study also provides information on vegetation dynamics in areas of variable land use, 

contributing to a greater knowledge of disturbance ecology and vegetation response.   
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Overall, this study provides vital information that can be used to help rehabilitate declining oak-

pine forests using the historical fire regime as baseline information. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 The Role of Fire in the Southern Appalachian Mountains 

2.1.1 Harmon 1982 

 Harmon examined the fire history of the westernmost portion of GSMNP in North 

Carolina and Tennessee.  Assuming that vegetation patterns were subjected to manipulation by 

Native Americans, Euro-American settlement, and fire suppression, the study sought to quantify 

the period of fire history during Euro-American settlement and other periods, including that 

period with the current period of fire suppression.  Harmon also investigated the role of fires 

ignited by both lightning and anthropogenic sources.   

 The area observed for study was approximately 9,100 ha within 260 m and 942 m above 

sea level.  Harmon focused in this area because pine forests are generally more extensive here 

than elsewhere within GSMNP.  The dominant canopy structure consisted of shortleaf pine, 

Table Mountain pine, pitch pine, Virginia pine (P. virginiana Mill.), scarlet oak (Quercus 

coccinea Muennch.), blackjack oak,  (Q. marilandica Muennch.), chestnut oak (Q. montana L.), 

red maple, sourwood (Oxydendrum arboretum L.), and black gum.  Archaeological evidence 

revealed occupation of the Cades Cove area by aboriginal humans as early as ca. 8000 years 

before present.  Euro-American settlement occurred after A.D. 1790, but ceased during the 1930s 

after lands were incorporated into GSMNP.   

Fire history was determined by examining basal wound scars in both living and dead 

pines.  Harmon distinguished fire scars from other basal wounds by the presence of charcoal, 

upslope position, presence of overlapping scars, and lack of other sources that could cause 
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potential stem damage.  Fire scarred samples were removed by hand-sawing partial cross 

sections from the damaged stem.  The samples were dried, sanded, and examined with a hand 

lens.  Harmon then examined the tree-ring record to construct a fire history.  Fire management 

records were obtained from 1940 to 1979 to compare fire occurrence prior to the establishment 

of the park with current fire suppression after establishment of GSMNP.   

 Pine trees sampled totaled 43, revealing 115 fire scars.  The oldest scar dated to 

“approximately” 1856, but other scarred samples were probably destroyed due to excessive 

decay or previous fires.  Harmon reported that 96% of the pine forests he examined had burned 

between 1929 and 1940.  The mean fire interval of pine forests was 12.7 years between 1856 and 

1940, the shortest interval being 2 years and the longest being 49 years.  South facing upper and 

lower slopes were most likely to reveal scarred trees. 

Harmon stated that his method probably underestimated the actual number of fires 

because only fires that were intense enough to damage the tree’s cambial tissue were recorded.  

Fire damage may also reduce accurate age determination by distorting annual ring growth.  

Further information is required for the period prior to 1856 to accurately analyze fire history and 

to clarify the effects of 20
th

 century fire management policy on forests in the western portion of 

GSMNP.  

 

2.1.2 Brose and Waldrop 2006 

 This study was conducted at nine different sites in northern Georgia, western South 

Carolina, and eastern Tennessee.  Dendrochronology was used to analyze age structure, species 

recruitment trends, radial growth patterns, and fire scars to determine whether Table Mountain 

pine and pitch pine originate as a result of stand-replacing, high-intensity crown fires. 
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 Brose and Waldrop had conducted a previous study in 1999 that determined Table 

Mountain pine displayed increased regeneration in areas that experienced a moderate-intensity 

surface fire and partial removal of canopy, rather than the full exposure created as a result of 

high-intensity crown fires.  However, they did mention that a pine stand that exhibits unimodal 

age distribution is a result of catastrophic, stand-replacing fire.   

Brose and Waldrop used the following criteria to select sites: (1) basal area of the main 

canopy was >50% Table Mountain pine; (2) the site was capable of supporting hardwood 

species; and (3) fire scars were present at each location.  Fire events were determined by 

crossdating both internal and external fire scars, regardless of the species.  Three visible scars per 

sample were necessary to determine if they were of fire origin.  A total of 173 cross sections and 

214 cores were analyzed from the nine sites, and almost all samples were chestnut oak.  Only 24 

fires were apparent.  Brose and Waldrop concluded that the data collected did not support their 

hypothesis that Table Mountain pine-pitch pine arose mainly from stand replacing wildfires.  The 

occurrences of all-aged Table Mountain pine-pitch pine stands that can support hardwoods 

suggest that a different type of disturbance regime was in place.  They suggested surface fires of 

varying intensity at a periodic return interval were a common occurrence before the most recent 

recruitment of Table Mountain pine stands.  The authors also suggested that a low intensity 

fire/grazing disturbance regime created ideal understory conditions for widespread regeneration. 

Their final conclusion stated that Table Mountain pine stands are not dependent on high-intensity 

fires and that these high-intensity fires are not essential for the perpetuation of the species.  A 

periodic disturbance regime of canopy openings and surface fires may be a more applicable way 

of sustaining Table Mountain pine communities in the southern Appalachian Mountains. 
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2.1.3 Cohen, Dellinger, Klein, and Buchanan 2007 

 Lightning has long been discredited as a natural ignition source in southern Appalachia 

(Jurgelski 2008).  The best indicator of possible changes in lightning-caused fire activity is the 

significant decline in oak, hickory, and pine species that are dependent on fire, especially Table 

Mountain pine.  In the absence of fire, fire-sensitive, shade-tolerant species such as red maple, 

eastern hemlock, and black gum have become dominant.  Cohen et al. gathered and analyzed fire 

monitoring and report data concerning suppressed and unsuppressed wildfires in GSMNP from 

1940 until the present.  All fires were associated with non-anthropogenic ignition.  Ten of 16 

naturally ignited fires were monitored in GSMNP from 1998 to 2006 under wildland fire policy, 

which allows fires to remain unsuppressed under the right conditions.  This period was also 

chosen because of the first fire management policy implemented by GSMNP in 1996. 

Several case studies on fire behavior were classified into three groups based on 

qualitative reports: (1) fire persistent through precipitation events, (2) fire emergent from 

dormancy (e.g. rekindled after smoldering), and (3) large, unsuppressed lightning fires.  The 

largest fire, both in extent and duration, was the Chilly Springs Knob fire of April 3, 2006.  It 

covered 369.5 ha (913 ac) and lasted 38 days.  Most lightning-ignited fires occurred during the 

growing season and remained through periodic events of precipitation.  Unsuppressed wildfires 

showed more dynamic behavior and intensity, burned for greater durations, and had greater 

perimeter gain.  Natural extinctions were most noted at boundaries coinciding with wet, moist 

coves, stream beds, and drainages or depressions.  These case studies display the complex 

relationship between fire behavior, weather, topography, vegetation, and fuel loads, especially 

when unimpeded.  The qualitative reports suggest that isolated fires have potential to last for 

extended periods of time, either smoldering or spreading depending on fuel availability.     
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2.2 Fire and Land-Use History in the Appalachian Mountains 

2.2.1 Pyle 1988 

Pyle developed this study from written and mapped archival records to summarize the 

spatial extent and type of vegetation disturbance of GSMNP.  She categorized disturbances for 

major watersheds and the entire Park.  The main disturbances observed were settlers’ activities, 

logging, and fire.  Although the influence of Native Americans and the chestnut blight caused 

significant changes, these disturbances were excluded.  She found that species composition and 

age-class distributions most likely have been altered in response to the type, intensity, and extent 

of historic vegetation disturbance.   

 To determine the spatial extent of vegetation disturbance, map overlays were created 

using a 256 dpi grid.  Disturbance boundaries were determined using vegetation maps from 

Miller (1938).  Logging practices included the use of narrow gauge railroad, mechanized 

skidders and loaders, and band sawmills.  Usually, 1/2 to 2/3 of major watersheds were cleared 

within 10 to 15 years, cutting with little selectivity and far up slope.  Most watersheds had been 

cleared using earlier methods, and then cleared again mechanically.  Typical regeneration 

following logging disturbance consisted of yellow poplar (Liriodendron tulipifera L.), fire cherry 

(Prunus pensylvanica L.), yellow birch (Betula alleghanienses Brit.), and red maple.  When 

logging was heavily mechanized, the landscape was rapidly denuded and logging wastes resulted 

in an abundance of fuels.  After mechanized logging, 23% of these areas burned intensively. 

 In the western portions of GSMNP, concentrated settlement generally occurred below 

760 m.  Scale and intensity of land use decreased with distance from transportation routes and 

concentrated settlement.  This area of the Park was diffusely disturbed (e.g., influenced by 

grazing, logging, and fire), but some areas had large tracts with abandoned homesteads and 
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evidence of early logging.  Large trees were usually harvested.  Adjacent forest stands and 

ridgetops experienced light fires and grazing pressures.  These disturbances are often indicated 

by trees scarred from both fire and wire fencing, and cattle trails that follow the contours of 

slopes.  Livestock often preferred yellow poplar forage, allowing greater dominance of yellow 

pine.  Some records indicate selective logging of oaks and pitch pine for leather tanning and tar 

kilns.  

 This study provides the best known disturbance history of GSMNP, although coarse in 

resolution.  It also provides useful information on the extent of settler activities and land use, 

especially around Cades Cove.  This study provided information about which areas in GSMNP 

had experienced fire and guided my search in determining a historic view of the fire regime. 

  

2.2.2 Orwig and Abrams 1994 

 Prior to European settlement, Native Americans burned extensive portions of the 

landscape to facilitate travel, drive game, increase berry yields, and clear land for settlement and 

agriculture in eastern North America.  Since European settlement, vegetation patterns changed as 

woodlands were cleared for agricultural fields, grazing pastures, and iron forges. Poor 

agricultural practices led to extreme soil erosion and degradation, and land was often abandoned.  

These processes shaped the composition of vegetation on a broad landscape scale. However, 

little information on forest composition exists prior to European historical records.  This study 

analyzed the impact of past and present-day land use on forest succession and composition, as 

well as the rate and process of oak-hickory forest replacement. 

 The Fredericksburg and Spotsylvania National Military Parks span approximately 2500 

ha across the Piedmont Plateau and Coastal Plain of northern Virginia.  Within the parks, 58 sites 
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that were undisturbed since the 1920s were surveyed.  Stands were comprised of homogeneous 

forest vegetation ≥ 4 ha.  Twenty 0.02 ha circular plots were placed systematically along 

transects at 30 to 40 m intervals and each tree within was surveyed by species, DBH, and canopy 

position.  Two trees per plot were randomly selected, and increment cores were extracted at 1.4 

m height.  Percentage slope and directional aspect were recorded.  Fire records were referenced 

for the state of Virginia from 1925 to 1991 to evaluate the importance of fire and its impact on 

present-day forests.  Importance values were assigned to tree species of each stand and then 

evaluated by detrending correspondence analysis (DCA) to group forest stands and evaluate 

composition.  Relationships between species importance, seedling/sapling density, physical site 

factors, and DCA were compared by correlation analysis.  

 Three ecological groups were defined from overstory dominants: (1) white oak (Quercus 

alba L.), (2) white oak-scarlet oak (Quercus coccinea Muenchh.), and (3) Virginia pine.  

Seedling and sapling diversity were different among the three stand types.  Most shrubs were 

maple-leaved viburnum (Viburnum acerifolium L.), blueberry (Vaccinium spp.), and huckleberry 

(Gaylussacia baccata (Wang.) K. Koch).  Survey records indicate that the forests of the study 

area were dominated by white oak and red oak (Quercus rubra L.).  However, it is important to 

recognize that white oak was the preferred witness tree by early surveyors.  

 Most increases in radial growth followed past disturbance.  These episodic growth 

releases were most commonly related to logging, but could also be caused by windthrow, fire, 

lightning, pathogens, and insect damage.  Tree age-diameter relationships revealed that tulip 

poplar will remain an important component of old-growth forests in the future.  However, black 

gum can survive well over 300 years.  This species’ slow persistence may result in dominant 

canopy status over time.  Another unique feature of the study area was the scarcity of common 
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eastern oak forest replacements, such as sugar maple (Acer saccharum Marsh), red maple, black 

cherry (Prunus serotina Ehrh.), and beech (Fagus grandifolia Ehrh.). Most importantly, oaks 

were experiencing poor recruitment caused by canopy closure and lack of disturbance under 

federal protection.  

 

2.2.3 Jurney, Evans, Ippolito, and Bergstrom 2004 

 This article documents reference conditions for the management of fire within 

ecosystems of southeastern North America.  After the advent of fire suppression policies, data on 

landscape-scale fire have been limited and much discussion has been raised on initial calculated 

fire return intervals.  Fire records of the USDA Forest Service from 1916–1990, along with 

dendrochronological and dendroclimatological studies covering the period 1670–1993, historical 

accounts of Native American fire use for the period 1500–1870, and pollen sequence records of 

the last 20,000 years were examined to provide data that compare and test models of fire return 

intervals. 

 The ecology of disturbance and fire are commonly debated, revealing two extreme views: 

(1) fire is purely destructive and (2) fire is an essential tool for management and restoration.  The 

first view stemmed from early traditional misconceptions that the Southeast existed in an 

undisturbed, climax condition before the arrival of European settlers.  F.E. Clements (1916) 

proposed that only undisturbed areas under specific climatic control were suitable for ecological 

research.  Theoretically, this approach defined fire as a disturbance that prevented mixed 

temperate forests from reaching the stage of climax.  In disagreement, H.A. Gleason (1922) 

proposed that forests had been heavily disturbed by Native American use of fire, and climax 
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conditions were not absolute.  Furthermore, dendrochronological records of “virgin forests” 

revealed evidence of disturbance.  

 Fire has been neglected as a component of the natural ecosystem because much of the 

older literature reinforced the idea that all vegetation approaches a climax state.  However, this 

assumption disregards the natural functions of fire and the relationship to vegetation.  Jurney et 

al. (2004) sought to clarify this misconception by synthesizing and comparing data in an 

analytical framework so reference conditions and accurate fire intervals could be established. 

 Pollen records of the Tennessee Valley indicated that aboriginal agriculture significantly 

modified vegetation structure in this area from ca. AD 600 to 1500.  Other palynological records 

from the Ouachitas and Ozark highlands displayed a prominent distribution of jack pine (Pinus 

banksiana Lamb.), which is a fire-dependent species with serotinous cones, during the last 

glacial episode (Wisconsonian).  This reveals a definitive history of lightning-ignited fires in 

Ozark Plateau ecosystems during the Pleistocene.   

 Fire-scarred trees have provided direct evidence of past fire events, but may be 

circumstantial depending on fire intensity.  Thus, only trees that contain multiple healed or open 

scars should be used to accurately determine fire return intervals.  Studies of historic fire return 

intervals in the Ozark-St. Francis National Forest, Arkansas, display much variation from 1680–

1993.  During the Native American period of 1680–1819, the fire return interval was 4.8 years, 

changing to 1.6 years during European settlement (1820–1919), 4.3 years in the Early Modern 

period (1920–1949), and > 22 years in the Late Modern period (1950–1993).  Historical accounts 

from early European settlers of the Southeast are limited, but also reveal direct evidence of 

Native American use of fire to manipulate vegetation and drive wild game. 
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 Increasing dendrochronological evidence indicates that tree growth, drought severity, and 

fire frequency are related phenomena.  Additional research will improve paleoclimatic records 

for southeastern North America.  In recent years, ecologists have been shifting perspectives of 

resource management and conservation to include fire.  Stand structure has always fluctuated, 

and management policies that reflect disturbance (i.e., logging, fire) aid in maintaining stand 

structure diversity and landscape patterns.        

 

2.3 Mixed Oak-Pine Forests and Fire   

2.3.1 Harrod and White 1999 

    Harrod and White conducted a study of age structure and radial growth in xeric pine-

oak forests in GSMNP to assess changes in canopy structure and composition before and after 

1940.  They examined plot data from the 1930s, 1970s, and 1990s that suggested that closed 

canopy forests were dominated by Pinus species.  The dominant species were shortleaf pine, 

Table Mountain pine, pitch pine, and Virginia pine.  Other canopy species were primarily 

Quercus species. 

 Observations of sites between the 1930s and 1970s revealed that canopy density and 

basal area approximately doubled.  Due to fire suppression, the historical mosaic of vegetation 

changed from low density basal area to dense, closed-canopy forest dominated by hardwoods.  

Composition of these sites has shifted from Pinus and Quercus species to shade-tolerant species 

such as red maple, black gum, eastern white pine, and eastern hemlock.  Dendrochronological 

techniques were used to determine radial growth and age structure of four xeric sites.  Previous 

observations and dendrochronological data were then compared to investigate increases in stand 
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density and shift in canopy composition from yellow pine and oak species to more shade-tolerant 

species. 

 The results showed that the most abundant canopy tree was eastern white pine and that 

eastern white pine made up the majority of saplings.  Yellow pines made up 32% of dominant 

canopy stems and were consistently large individuals (up to 54 cm DBH), but did not occur in 

the sapling stratum.  The oldest trees in each plot were shortleaf pine, and the youngest found 

had been established in 1877.  Growth releases observed prior to and after 1960 show that 

species composition has changed at the canopy level and within the understory.  Growth releases 

prior to 1960 were mostly found in yellow pines.  After 1960, species with greatest growth 

release were either red maple or sourwood.  These changes reflect a reduction in fire frequency. 

Otherwise, yellow pines would be the dominant seedling to regenerate.   

The results showed that yellow pines were not successfully reproducing due to exclusion 

of wildfires.  Without a consistent fire rotation, Harrod and White found it highly probable that 

yellow pines will disappear from the sites they now occupy and become restricted to ultra-xeric 

sites, such as rock outcrops and steep, rocky ridges.  Successful pine regeneration can occur at 

these sites without fire, and encroachment by other species is limited by poor soils.  However, 

more research is needed to determine whether yellow pines can persist in the absence of fire.      

 

2.3.2 Barden 2000 

    In 1976, Barden found a self-maintaining population of Table Mountain pine on a 

granite rock outcrop called Looking Glass Rock near Brevard, North Carolina.  Until this 

discovery, it was generally thought that Table Mountain pine regeneration required medium to 

high intensity fire, which opens the forest canopy, reduces organic litter, and opens serotinous 
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cones.  In 1986 and 1996, Barden returned to recensus the population and determine whether it 

had self-maintained without fire since 1889.  

 In 1977 and 1996, Barden tested seed viability and measured radial growth of pines 

established in shallow, poor quality soils, which contribute to increasing tree sensitivity to 

climate variations.  The analyses determined the effects of extreme drought on seed viability and 

tree growth during the 1980s.  The area of study was located on the southwestern shoulder of 

Looking Glass Rock.  Soil pockets that support the population of Table Mountain pine were only 

10–40 cm in depth.  Elevation ranged from 1040 m to 1180 m above sea level (a. s. l.) and slope 

was approximately 10–20%.  

 Fire-scarred cross sections and increment cores were obtained in 1976 that revealed a 

canopy-opening fire had occurred around 1810, and the most recent fire occurred in 1889. No 

fires have occurred since then.  Demographic information was obtained from an easily accessible 

study area by photographs and mapping techniques.  The Palmer Drought Severity Index (PDSI) 

was used to determine fluctuations in climatic conditions between 1925 and 1996. Annual radial 

growth was measured from 1980 to 1996 because these years provided the greatest fluctuations 

of the PDSI values.  Ring widths were then averaged to calculate a reference growth index. 

Fluctuation of PDSI was unpredictable from 1960 to 1996, but average July temperatures of the 

study area increased by more than 1.5 °C during this time.   

 The population produced new seedlings between 1976 and 1996 without fire.  The entire 

population declined 35% as a result of high mortality and low recruitment of the youngest age 

class.  Radial growth and July PDSI were found to be positively correlated.  Barden predicted 

that recruitment would increase if precipitation returned to a normal or above average range. 

However, it did not increase despite PDSI values within the normal range.  Drought and 
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increasing temperature may have delayed effects on seed viability and recruitment, resulting in 

desynchronized pollen release and lack of germination.  Temperatures 28°C or greater may also 

limit survival of seedlings by reducing root growth.  Further analysis is needed to determine the 

current status of this population. 

 

2.3.3 Harrod, Harmon, and White 2000 

 Changes have occurred in the fire regimes of GSMNP, and results show significant 

changes in canopy composition and structure of the mixed temperate woodlands.  Prior to the 

establishment of GSMNP in 1934, human settlement was extensive throughout the area and fires 

were set as a method of maintenance for the forests.  At this time, mean fire rotation was 

calculated at 12.7 years.  With the onset of active fire suppression, mean fire rotation increased 

to over 500 years.  In this study, Harrod and others analyzed post-fire succession of xeric, 

southern Appalachian forests in GSMNP by comparing vegetation in plots that burned in 1976–

1977 with other similar stands that had not burned before 1940.  Observations of recent post-fire 

succession were then compared with data on historic fire regimes to analyze the effect of a 

declining fire frequency on species richness and vegetation structure. 

 The study area in the western regions of GSMNP consisted of 108 permanently marked 

plots measuring 20 x 50 m.  Sites were chosen subjectively to encompass a range of conditions 

and disturbance histories, including old agricultural fields, previously logged areas, and areas 

that had burned during 1976–1977.  Past disturbances were recorded, such as logging, southern 

pine beetle, and fire.  This study focused on two groups of plots that had no distinct history of 

settlement or agriculture.   
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 Evidence of fire was recorded in seven of 10 plots that had not burned since 1940, two of 

which displayed fire scars that dated to 1926.  Pearson correlation coefficients were generated to 

examine and compare statistical significance of the following parameters: elevation, TMI, 

percent pine beetle mortality, percent basal area killed by fire, post-fire percent canopy opening, 

fire seasonality, Pinus seedling density in 1980, Pinus sapling density in 1984, maximum cover 

of shrubs and woody vines from 1977 to 1984, and maximum herbaceous cover from 1977 to 

1984. 

 Results showed that percent of basal area killed showed a positive correlation with post-

fire canopy openings, and both showed highly significant positive correlations with pine beetle 

damage prior to fire.  Post-fire mortality was highest among smaller stems, but patterns varied 

with species and fire severity.  Four growing seasons after fire, Pinus seedlings displayed a 

significant negative correlation with post-fire litter depth.  Pinus saplings showed partially 

significant correlations with pre-fire pine beetle damage.  Unburned plots revealed an abundant 

increase in red maple and eastern white pine at the canopy level and a decline in Quercus 

species, particularly at the sapling stratum.  Shrub cover showed a positive correlation with post-

fire litter depth and season.  Maximum herbaceous cover showed an extremely high positive 

correlation with basal area killed and canopy opening, but not with post-fire litter depth.  

Herbaceous cover and diversity were lower on sites that had not burned since 1940, as compared 

to burned plots in the first decade post-fire.   

 The general pattern of long-term succession follows that of logging disturbance and 

agricultural abandonment.  Succession of herbaceous species diversity was much lower in 

unburned plots than burned plots.  The early 20
th

 century fire rotation of 12.7 years would have 

time-since-fires of 8 years or less in 50% or more xeric sites.  Under the late 20
th

 century fire 
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rotation of more than 500 years, only 2% or less xeric sites would have time-since-fires of 8 

years and 90% of xeric sites would be occupied by time-since-fire dates of 50 years or more.  

This suggests that the historic successional communities would have relatively open canopies 

and high species diversity within the herbaceous layer.  Now, a mature, closed canopy dominates 

the majority of xeric forest sites in southern Appalachia with low herbaceous species diversity.  

This shows that frequent fire would have restricted accumulation of woody fuels and allowed 

thicker growth of herbs and grasses.  These conditions allowed an increase in drying of the 

ground layer, which further supported a low-intensity fire regime.  This study adds to growing 

evidence of scattered, open-canopy woodland with a high diversity of herbs and grasses in 

Southern Appalachian landscapes.      

 

2.4 Rehabilitation of Mixed Oak-Pine Forests 

2.4.1 Waldrop, Welch, Brose, Elliot, Mohr, Gray, Tainter, and Ellis 2000 

Historically, ridgetop pine communities of the southern Appalachian Mountains were 

perpetuated and sustained by fire caused by both humans and lightning.  Table Mountain 

pine/pitch pine communities present today were established through landscape-scale 

disturbances such as fires, logging, insects, and disease.  Fire suppression has increased within 

the last century, removing large scale disturbances, causing succession of ridgetop pine 

communities to dominance of hardwoods and dense, closed understories.  Ridgetop pine 

communities generally consist of Table Mountain pine and pitch pine overstory canopy, with 

chestnut oak, scarlet oak, and black gum as midstory species.  The understory typically contains 

a dense shrub layer of mountain laurel. 
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 This review of the current research of pine communities examined the results of three 

pertinent studies of stand-replacement prescribed fires in National Forest and National Park 

lands.  Corollary studies in dendrochronology, seed biology, seedbed habitat, and mycorrhizae 

were also discussed.  The comparison of studies revealed the amount of pine regeneration under 

natural conditions.  However, these studies only investigated conditions in the year following a 

prescribed burn. 

 The first study was conducted in the Tallulah Ranger District, Chattahoochee National 

Forest.  USDA Forest Service staff conducted a prescribed stand-replacing fire on a 344 ha (850 

ac) in April 1997.  The variation of fire intensity over a large spatial area allowed comparison of 

successful pine regeneration within areas that burned with different intensities.  The second study 

examined a small scale, 3 ha (7.5 ac) prescribed burn in the Grandfather Ranger District of 

Pisgah National Forest.  USDA Forest Service personnel used a ring and head fire technique to 

burn the site in May of 1996.  Fifty-one percent of the pine component within the stand was 

Table Mountain pine.  The third study examined a 303.5 ha (750 ac) burn unit on a south-facing 

slope in the Wine Springs Creek watershed of the Nantahala National Forest.  The studied 

ridgetop community was dominantly pitch pine, which comprised 49% of total basal area.  The 

burn was ignited by helicopter in April of 1995 and was designed to create low intensity fire on 

the lower slopes and high-intensity crown fires at the ridgetop.   

 The prescribed burns were defined by four fire intensities described by Waldrop and 

Brose:  low, medium-low, medium-high, and high.  All four fire intensities were observed at the 

Chattahoochee National Forest, while only medium-low fire intensities were observed at the 

Nantahala and Pisgah National Forests.  All failed to control hardwood and shrub competition.  

The studies in dendrochronology provided an informative history of stand regeneration, showing 
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that study stands were unevenly aged, and that pine regeneration took place until fire suppression 

efforts were implemented.  Seed biology studies revealed that the very young trees also produce 

viable seed, implying adaptation to frequent fire occurrence.  These comparative studies suggest 

that additional research of fire intensity after several growing seasons is needed to assess 

seedling survival and successful pine regeneration.                 

 

2.4.2 Waldrop, Brose, Welch, Mohr, Gray, Tainter, and Ellis 2002 

This review examined the possibility for high-intensity fire to aid in successful 

regeneration of Table Mountain pine.  Observations of three prescribed fire studies and four 

supporting studies helped evaluate the need for high-intensity prescribed burns.  The study areas 

were the same as the previous study, and also included the Buzzard’s Roost Preserve of the 

South Carolina Heritage Trust Program.   

Fire intensities were again categorized as low, medium-low, medium-high, and high.  

High intensity fires occurred only within the Tallulah District.  The lowest pine densities found 

within this district were unexpected, suggesting that extreme heat killed seeds and destroyed 

seedbed suitability.  All other study areas experienced a range of fire intensities without 

exceeding medium-high.  Prolific hardwood sprouting followed fires of all intensities, which 

further suggested that multiple, low-intensity fires may reduce seedling competition and aid in 

maintaining seed sources.  

A relevant study of seed biology revealed that seed viability increased as cones matured 

to 4–5 years of age.  Young trees 5–10 years of age also displayed 3 year old cones with 23% 

viability, suggesting that Table Mountain pines are adapted to regeneration within a low-

intensity fire regime.  The results also implied that viable seeds become available every 2–3 
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years under frequent low-intensity fire, as long as overstory pines do not experience crown fire 

or mortality.  Waldrop and Brose evaluated seedbed habitat in a greenhouse by controlling shade 

and duff conditions.  Moderate levels of duff (5 cm) and shade (30%) were optimum for 

establishment, in contrast to previous work that suggested bare mineral soil and full sunlight 

were essential for establishment.  Multiple low-intensity fires may be more suitable for 

maintaining these conditions.  Other studies suggest that high-intensity fire negatively affects 

mycorrhizal root tips, causing poor regeneration.  Dendrochronological studies of Table 

Mountain pine show variation in age class frequency from 100–158 years, suggesting that pine 

stands were relatively open and regenerating until the time of fire exclusion.  These studies 

revealed that high-intensity burning may not be necessary, but detrimental to successful 

regeneration of Table Mountain pine in southern Appalachia.         
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CHAPTER 3 

STUDY AREA 

3.1       The Southern Appalachians 

 The southern Appalachian Mountains extend from West Virginia south through Virginia 

to northern Alabama and northern Georgia, and consist of three main physiographic provinces: 

the Appalachian Plateau, the Ridge and Valley, and the Blue Ridge (Fenneman 1938).  The most 

pronounced of these regions is the Blue Ridge, containing several subsets of mountain ranges 

(e.g., Unaka Mountains, Iron Mountains, Snowbird Mountains, and Black Mountains) with the 

crest, or divide, serving as a boundary between western North Carolina and eastern Tennessee.  

The most well known mountains in the Blue Ridge province are protected as GSMNP.  

Elevations range from 450 to 2037 m a.s.l. and the greatest cross-sectional width spans 

approximately 80 km.  Within the southern portion of the Blue Ridge, 46 peaks are found above 

1828 m and 288 exceed 1524 m (Rehder 2004).  The highest peak of this region is Mount 

Mitchell (2037 m a.s.l.), located in the Black Mountains near Asheville, North Carolina.  It is 

closely rivaled by Clingman’s Dome (2028 m a.s.l.), which is the highest elevation in GSMNP.   

West of the Blue Ridge region is the Ridge and Valley province.  This area is dominated 

by southwest to northeast trending ridges that display the geologic relationship between 

anticlines and synclinal folds.  Ridges can range in height from 260 to 1220 m a.s.l.  This 

province is greatest in length, stretching 2,000 km from southern Pennsylvania to northern 

Alabama with the greatest width approximately 120 km.  The Ridge and Valley province is the 

most populated region of the southern Appalachians.  Early farmers used the valleys with 

limestone-based soils that enhance agriculture, rather than valleys dominated by shale-derived 
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soils (Rehder 2004).  The largest valley of this province, referred to as the Great Valley, served 

as the earliest route of transportation for both Native Americans and early Euro-American 

settlers.  This route was called the Great Wagon Road and is still a main route for transportation.  

It is now the main corridor for U.S. Interstate 81.   

The Appalachian Plateau is the westernmost escarpment of the southern Appalachians.  

The northern portion is called the Allegheny Plateau, while the southern portion is referred to as 

the Cumberland Plateau.  The landscape has a tabletop appearance and watersheds are dissected 

by water erosion.  This eroded limestone forms sinks, caves, and gorges, which is commonly 

referenced as karst topography (Kohl 2001).  Elevations on top of the plateau range between 600 

m a.s.l. in the southern portions to 1500 m a.s.l. in the northern extent of West Virginia.   

      

3.2       Great Smoky Mountains National Park (GSMNP) 

 GSMNP is the most visited national park in the United States, with over two-thirds of the 

nation’s population in driving distance (NPCA 2004).  GSMNP lies in the heart of the Blue 

Ridge province between western North Carolina and eastern Tennessee and covers roughly 

203,200 ha.  GSMNP was created on June 15, 1934 through numerous land grants, private 

donations, and public funds (Campbell 1960, Brown 2001).  President Franklin D. Roosevelt 

dedicated the Park at Newfound Gap, the lowest passable road that crosses the main crest of 

GSMNP.  The Cades Cove area attracts more visitors than any other portion of the Park because 

of its cultural history, the remaining folk architecture, and abundant wildlife (NPS 2008). 

GSMNP contains over half of the remaining old-growth forests in the eastern U.S. and is one of 

the most biologically diverse of all the national parks (Martin 1992, NPCA 2004).  The greatest 

biodiversity occurs in tree species, salamanders, flora, and fungi and GSMNP is known as the 
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“salamander capital of the world” (NPCA 2004, NPS 2008).  The United Nations declared this 

park an International Biosphere Reserve in 1976 and a World Heritage Site in 1983 (NPS 2008).   

 

3.2.1    Geology 

 GSMNP is a product of the Alleghanian orogeny, which occurred approximately 245–

250 million years ago when the African plate collided with the North American plate (King et al. 

1968).  Over time, the African plate continued to shift west, causing further uplift and the full 

development of the Appalachian Mountain chain.  Most bedrock within GSMNP is composed of 

metamorphosed sedimentary rocks that were deposited in an intercontinental sea called the 

Iapetus Ocean (King et al. 1968, Moore 1988).  The sediments were compressed and subjected to 

extreme pressure and temperatures throughout the Alleghanian orogeny, which closed the 

Iapetus Ocean, resulting in a variety of metamorphosed sandstones, shales, and siltstones.  The 

dominant bedrock consists of Precambrian rocks within the Ocoee supergroup, defined as 

Metcalf phyllite, Elkmont sandstone, and Cades sandstone, underlain by gneiss, limestone, and 

dolomite (King et al. 1968, Moore 1988, Southworth et al. 2000).   

        

3.2.2    Soils 

 The dominant soils of GSMNP are part of the Ramsey series, classified as Ultisols and 

Inceptisols, varying by parent material, percentage slope, vegetation characteristics, and 

watersheds (Elder 1959).  Ultisols are most prominent in areas of warm and humid climates that 

experience a periodic dry season.  However, these soils are not limited by specific temperatures 

or moisture regimes other than aridity.  Ultisols typically have stratified layers of aluminum-

based clays that lack calcium.  These soils have low fertility and supplemental minerals or 
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fertilizers are needed for cultivation.  Ultisols were occupied by both hardwood and coniferous 

forests upon European settlement (USDA 1999).   

 The Cades Cove area has its own soil classification, recently defined as the Cades series.  

This soil type is characterized by strongly acidic, well drained silty loams, on slopes varying 

from 2 to 8%.  Cades soils were derived from alluvium that was formed from weathered, 

metamorphosed sedimentary bedrock transported from alluvial fans and terraces (NCSS 2007).  

Soil depth is approximately 180 cm and can be found between 420–915 m of elevation.  These 

soils have low runoff rates and were previously forested, but have been cleared for pasture land 

or hay fields (NCSS 2007).  The most common soil types on slopes varying from 30 to 90% 

along Cooper Road Trail are of the Ditny-Unicoi (34% of total area) and the Soco-Stecoah (22% 

of total area) complexes (WSS 2008).    

   

3.2.3    Climate         

 The climate of the southeastern United States is classified as humid subtropical (Cfa), or 

mid-latitude wet, under the Köppen climate classification system (Shanks 1954, Pidwirny 2006).  

Humid subtropical climates are characterized by year-round, evenly distributed rainfall; cool, 

mild winters; and warm to hot summers.  Thornthwaite (1931) developed a classification system 

based on altitudinal gradients and potential evapotranspiration that categorizes GSMNP as 

mesothermal or microthermal perhumid (rain forest).  GSMNP receives approximately 137 cm 

of annual precipitation at the lower elevations, increasing to approximately 210 cm at the higher 

altitudes (Shanks 1954, NPS 2008).  In the lower elevations, summer high temperatures range 

from 28 to 31 °C and summer lows range from 12 to 15.5 °C.  Winter high temperatures range 

from 10 to 12.5 °C and lows from –2 to 1 °C.  In the higher elevations, summer high 
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temperatures range from 13 to 18 °C and summer lows range from 6 to 11.5 °C.  No 

temperatures greater than 26.6 °C have been recorded at elevations higher than 1980 m a.s.l. 

(NPS 2008).  Winter high temperatures range from 1.5 to 4 °C and lows from –7 to –4.5 °C.  

Both temperature and precipitation can change abruptly due to the effects of orographic lifting 

over 1600 m of relief throughout the heavily dissected landscape (Shanks 1954).    

 

3.2.4    Forest Vegetation 

 The vegetation composition of GSMNP varies greatly depending on moisture gradients, 

elevation, and topographic barriers.  Forest types are categorized by the dominant overstory and 

understory plants.  Whittaker (1956) described vegetation based on mesic, submesic, subxeric, 

and xeric sites, while the U.S. Geological Survey and National Park Service Vegetation Mapping 

Program (1999) classified vegetation communities by elevation, species dominance, and 

ecological grouping.  This vegetation classification system found 52 different vegetation 

communities on the Cades Cove and Mt. LeConte quadrangles, but should not be used as a 

definitive measure for the entirety of GSMNP, as it only focuses on these two areas. 

 Mesic sites are restricted to valley bottoms that retain moisture year-round.  These sites 

contain most of the remaining old-growth forest within GSMNP (Martin 1992).  Common 

species that occur on mesic sites include yellow poplar, eastern hemlock, Carolina hemlock (T. 

caroliniana Engelm.), white or American basswood (Tilia americana L.), yellow birch, 

American beech, white oak, Fraser magnolia (Magnolia fraseri L.), sugar maple (Acer 

saccharum Marsh.), and red maple.  Rhododendron species dominate the understory.  Species 

dominance on mesic sites largely depends on land-use history and disturbance (Runkle 1982).  

Recently, hemlock stands have experienced high rates of mortality caused by the hemlock wooly 
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adelgid (Adelges tsugae Annand).  Many of the old-growth stands are primarily hemlock and 

yellow poplar, so efforts are underway to treat the infected trees and prevent further outbreak 

(NPCA 2004). 

 Submesic and subxeric sites are dominated by a mosaic of vegetation, but are mainly 

composed of mixed oak-hickory forests.  The most common canopy dominants are white oak, 

chestnut oak, red oak (Q. rubra L.), black oak (Q. velutina L.), pignut hickory (Carya glabra 

Mill.), mockernut hickory (C. tomentosa Poir. ), yellow buckeye (Aesculus flava Aiton), red 

maple, American beech, black gum, white pine, and eastern hemlock (Whittaker 1956).  The 

most prominent historic species of these mixed forests was the American chestnut (Castanea 

dentata Marsh.).  These trees could reach sizes of 37 m in height and 1.5 m in diameter, 

increasing by approximately 2.5 cm in diameter per year on extremely fertile areas 

(Anagnostakis 1987).  In the 1920s, the introduction of an exotic fungus called Endothia 

parasitica devastated the American chestnut trees by infecting the cambial growth tissue.  This 

caused widespread mortality, destroying 99.9% of the species over its entire range (Anagnostakis 

1987).  These trees can still be found resprouting from remnant root bundles, but rarely reach 

heights over 6 m before the fungal blight inhibits growth.      

 Ridgetops and south/southwest facing slopes contain the most xeric forest types, 

supporting a variety of yellow pine species intermixed with hardwoods.  Shortleaf pine, Table 

Mountain pine, pitch pine, and Virginia pine are the canopy dominants.  The dominant 

hardwoods are usually black oak, blackjack oak, chestnut oak, scarlet oak, red maple, and black 

gum.  The understory largely consists of flowering dogwood (Cornus florida L.), sourwood, and 

sassafras (Sassafras albidum (Nutt.) Nees).  Mountain laurel and a variety of Vaccinium species 

are the dominant ericaceous shrubs. 
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 The dominant forest type at the higher elevations is spruce-fir montane forest.  The 

dominant tree species are Fraser fir (Abies fraseri (Pursh) Poir.) and red spruce (Picea rubens 

Sarg.).  The introduction of the balsam wooly adelgid (Adelges piceae Ratz.) combined with acid 

rain has caused severe mortality of Fraser fir, leaving red spruce as the remaining canopy 

dominant (Smith and Nicholas 1998).  The cooler temperatures and abundant rainfall of the 

higher elevations allow these unique forests to exist, mimicking the northern Appalachian 

Mountains from West Virginia and New York to Maine.  Grassy balds are another unique feature 

of the southern Appalachian Mountains.  The existence of these areas is still questioned by 

scientists, who postulate that these open, treeless areas were either created by fire, cleared by 

Native Americans, grazed by megaherbivores, or are remnants of the last glacial episode during 

the late Pleistocene (Billings and Mark 1957, Lindsay and Bratton 1979, Weigl and Knowles 

1995).          

 

3.2.5 Disturbances 

 Many disturbances have affected the vegetation in GSMNP.  Natural disturbances include 

lightning strikes, windthrow, canopy gaps, insect infestation, and fungal disease.  Natural 

disturbances also vary with forest type and topography.  For example, old growth stands may 

experience greater change after large trees fall, creating canopy gaps, while pine stands may be 

more prone to windthrow, insect infestation, or lightning strikes (Runkle 1982).  The greatest 

disturbance that impacts vegetation is most obviously human induced (Pyne 1982, Frelich 2002, 

Jantz 2002).  Timber harvests were often heavily mechanized, using clear-cuts and narrow gauge 

railroads, causing complete canopy removal, soil erosion, and complete restructuring of the 

historic vegetation composition (Lambert 1961, Pyle 1988, Duffy and Meier 1992). 
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 Wildfires may be the most controversial natural disturbance among governmental 

agencies, conservation groups, and scientific researchers.  Initial viewpoints suggested that fire 

was purely destructive to forests and timber, and expensive efforts to suppress fire were 

implemented on most government-owned lands (McDaniel 2004).  However, Native Americans 

and early settlers had used fire for centuries to manipulate the landscape for a variety of reasons.  

They would set fire to the forests to drive game, facilitate travel, increase berry yields, and 

increase grasses and herbs for grazing (Orwig and Abrams 1994, Delcourt and Delcourt 1997, 

Jurney et al. 2004).  Recently, researchers and land managers have started to see the benefits of 

periodic fire, which promotes biodiversity in a variety of ecosystems (McDaniel 2004).      

 

3.3   Cades Cove 

 Cades Cove is the most visited area of GSMNP (NPCA 2004, NPS 2008) (Figure 3.1).  

Its deep-rooted cultural history, as well natural beauty and abundant wildlife, make this area the 

most favored attraction of GSMNP.  A cove is defined as an eroded valley surrounded on all 

sides by mountains or other higher features of younger geologic rocks (Moore 1988, Kohl 2001).  

Coves are generally characterized by limestone or dolomite valley bottoms that eroded more 

quickly than the surrounding bedrock, resulting in an oval or bowl-shaped depression.  The 

primary stream drainage for Cades Cove is Abrams Creek.   

Cades Cove was initially inhabited by Native Americans as early as 10,000 years ago 

(Bass 1977).  Chert and flint spear points and arrowheads, as well as excavations of small 

hunting camps, revealed that indigenous populations hunted in this valley from the early Archaic 

period (8000–6000 BC) until Euro-American settlement in the early 19
th

 century (Bass 1977, 

Chapman 1985).  No permanent settlements have been discovered, but evidence of small-scale 
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    Figure 3.1 Map of Cades Cove from USGS 7.5 minute Quadrangle. 
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hunting camps and animal bone fragments indicate seasonal use for hunting. 

Cades Cove was named for a Cherokee leader named chief Kade (Dunn 1988).  The 

Cherokee name for the cove was Tsiyahi, meaning “otter place” (Mooney 1900, Dunn 1988).  

Henry Timberlake, an early British explorer known for maps and records of Cherokee country, 

mentioned the cove in early surveys of the Little Tennessee River in 1762 (Fink 1933, Dunn 

1988).  The earliest Euro-Americans were John and Lucretia Oliver of Carter County, Tennessee.  

They arrived in the fall of 1818 using the Rich Mountain road, a well traveled route used by the 

Native Americans (Jantz 2002).  Further settlement throughout the 19
th

 century resulted in 

scattered farmsteads throughout the isolated cove.  

 

3.3.1   Cooper Road Trail 

 The Cooper Road Trail leads northwest from Cades Cove toward the Abrams Creek 

campground and westernmost boundary of GSMNP (Figure 3.2).  Before the arrival of European 

settlers, the route had been previously constructed by Native Americans who used the trail to 

follow wild game into the cove (Gove 1994).  Daniel Foute was given permission by the 

Tennessee General Assembly to further develop the Cooper Road in 1852, formally known then 

as the Cane Creek Road (Dunn 1988).  This route allowed much easier access than Rich 

Mountain and continued to serve as the main commercial thoroughfare to Montvale Springs, 

Maryville, and Knoxville until the early 20
th

 century.  House foundations, spring boxes, and 

fence boundaries still exist along the trail today, indicating settlement until creation of GSMNP 

in 1934 (Dunn 1988, Gove 1994).   
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Figure 3.2  Map showing the Cooper Road Trail and study sites from 

USGS 7.5 minute Quadrangle. 
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3.4   Site Selection 

 I chose two sites along the Cooper Road Trail to quantify fire history.  The Cooper Road 

Trail covers a broad area, allowing fire regimes to be compared by topographic separation.  The 

ridges adjacent to Cades Cove were grazed by cattle and timber was selectively cut depending on 

species and use (Lambert 1961, Bratton et al. 1980, Pyle 1988).  Ridges along Cooper Road Trail 

contain several stands with old-aged yellow pines that provided adequate samples for 

comparison of fire regimes and stand dynamics.  To determine differences and spatial variation 

in vegetation and fire history, I chose two sites that were distinctly separated by watershed 

boundaries, topographic separation, and vegetation disturbance history (Figure 3.2, Figure 3.3).  

Prior land ownership was determined by maps from the Land Status Atlas (Book 2, Maps 35–

59), Pyle (1988), and land acquisition deeds located at GSMNP headquarters (Master Deed List 

2009). 

 

3.4.1 The Cooper Road Trail “Near” Site: CRX 

The first site is located upon the adjacent ridges of the Cades Cove ca. 1.4 km from the 

Cades Cove loop road along the Cooper Road Trail (N 35° 36.156’, W 83° 50.861’, 630 m a.s.l.) 

(Figure 3.4).  The property was acquired by GSMNP from John W. Oliver, but was formerly 

owned by heirs of W.H. Myers, Noah Burchfield, and Samuel L. Sparks (Deed 14, Tract 393; 

Deed 29, Tract 397; GSMNP Headquarters).  The property covered 121 ha (300 ac) and was  

probably used for both grazing and small timber supplies.  I saw trees damaged by wire fence at 

the top of the ridge, indicating that settlers may have disturbed this site.  Canopy species include 

shortleaf pine, pitch pine, Virginia pine, and white pine, to various hardwoods such as red maple,  
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Figure 3.3  Map showing vegetation disturbance history in GSMNP; adapted from Pyle 1988. 

<http://science.nature.nps.gov/nrdata/datastore.cfm?ID=45868> 
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Figure 3.4  Vegetation at the CRX study site. 
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red oak, scarlet oak, and chestnut oak.  The understory consists of Rhododendron species at the 

lower limits and American holly, sourwood, sassafras, black gum, eastern hemlock, and Fraser 

magnolia.  Fire scars were present on both living and standing dead trees.  Numerous game trails 

persist throughout the area, suggesting that the understory was impacted by heavy herbivore 

browsing.  Southern pine beetle damage is also evident.      

 

3.4.2   The Cooper Road Trail “Far” Site: CRT 

 The second study site is located on Stony Ridge, just north of Stony Branch and 

the Cooper Road Trail (N 35° 37.150’, W 83° 51.422’, 653 m a.s.l.) (Figure 3.5).  This area was  

obtained by GSMNP from the Morton-Butler Timber Company, which owned 10,596 ha (26,184 

ac) along Cooper Road Trail.  Morton-Butler Timber Company had acquired most of the 

property in 11 different tracts from local residents.  Some portions were obtained in land swaps 

with the Aluminum Company of America, some conveyed by Frank T. Wilson, and some 

obtained residences unknown with the nature of claims unknown (Deed 31, Tract 382; GSMNP 

Headquarters).  This site was most likely logged and maintained for grazing by nearby 

settlements.  Harmon (1982) sampled in this area when previously compiling a fire history for 

the westernmost portions of GSMNP.  At this site, I sampled a fire-scarred pitch pine (sample 

ID: CRT 307) previously sampled by Harmon.  Fire scars were present throughout the study site.  

        Canopy species include shortleaf pine, pitch pine, Virginia pine, and white pine as well as 

chestnut oak, scarlet oak, and red maple.  The understory consisted of American holly (Ilex 

opaca Aiton), black gum, sourwood, and sassafras.  Young cohorts of white pine and eastern 

hemlock were also present, with abundant mountain laurel, Vaccinium species, and greenbriar 

(Similax rotundifolia L.) forming a dense understory.  Many living and standing dead trees 
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     Figure 3.5  Vegetation at the CRT study site. 
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showed evidence of southern pine beetle infestation.  Pressures from settlement are only known 

to have existed in adjacent bottomlands, although it is likely that the ridge top was used for 

grazing.  
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CHAPTER 4 

METHODS 

4.1 Field Methods 

4.1.1 Fire History 

 Fire history information was obtained from both living and dead fire-scarred yellow pine 

trees, primarily pitch pine and shortleaf pine.  These species were targeted because wildfire may 

damage the cambial tissue of the tree and cause pine resins to fill the basal wound, thus 

preserving a scar that reveals the fire event in the annual growth ring (Fritts 1976, Grissino-

Mayer 1995, Richardson 1998).  The living trees can then record subsequent fires because the 

resin actually promotes scarring during later fire events.  To find fire-scarred samples, I searched 

for the presence of old-growth yellow pines and mountain laurel on south to southwest facing 

slopes.  After locating appropriate samples, we took the coordinates of each sample location with 

a GPS unit.  We used a chain saw to remove fire-scarred sections from snags, downed trees, and 

standing dead trees by removing complete cross sections, while smaller wedge-shaped cross 

sections were cut from a few living trees (Figure 4.1).  This method maintains the structural 

integrity of living trees without causing mortality, and is necessary to obtain the history of fires 

in the 20
th

 century.   

 

4.1.2 Stand Composition 

 Stand composition was determined by establishing two 20 x 50 m (1000 m
2
, 0.1 ha) study 

plots at each of the sites where fire-scarred samples were removed.  Study plots were chosen 

randomly by walking 10 paces in a 235° bearing from a randomly selected yellow pine 
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Figure 4.1  Photograph showing sample collection. 
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Figure 4.2  Dimensions of the study plot and sub-plots. 
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within the study area.  I chose this bearing because fires are most probable on south to 

southwest-facing slopes.  GPS coordinates and photographs were taken at each corner of the 

study plots. I placed 20 m transects at 10 m increments across the horizontal axis to divide the 

area into five, 200 m
2
 subplots (Figure 4.2).  Every living tree (any stem greater than 5 cm 

diameter at breast height) within the plots was identified by species, given a sample ID, then 

flagged and labeled with sample ID, species code, and DBH.   I tallied seedlings (stems less than  

10 cm height) by species within 1 m along the first, third, and fifth transects.  I tallied saplings 

(stems greater than 10 cm height and 5 cm DBH) by species in the first and fifth subplots. 

 

4.1.3 Age Structure 

 I collected age structure information by removing increment cores from each surveyed 

tree in one plot at each study site.  Each tree was cored using an increment borer and all cores 

were placed in a paper straw.  I attempted to obtain cores from two radii of each tree to ensure at 

least one core was sound.  Cores were taken parallel to the contour of the slope and as close to 

the ground as possible to minimize distortion of the annual growth rings and determine the most 

accurate date of establishment (Grissino-Mayer 2003).  Cores collected from trees with extensive 

internal rot and decay were discarded, but these were few in number. 

 

4.1.4  Volumetric Water Content and Duff Depth 

    Volumetric water content (VWC) of the soil was measured with time domain 

reflectometry, which pulses electromagnetic waves at millisecond intervals to determine the 

amount of available water in the soil pores based on the relationship with an object’s electrical 

conductivity (Topp and Davis 1985, Noborio 2001).  VWC measurements were recorded with a 
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Campbell Hydrosense time domain reflectometer (soil moisture probe) using 12 cm stainless 

steel rods.  Measurements were taken at the upper, middle, and lower parts of each vertical 

transect within the study plots.  A total of 15 readings were taken from each plot, totaling 30 

samples from each study area and a total sample size of 60.  Duff depths were recorded in cm at 

each end of the 10 m transect at each study plot, totaling 20 measurements at each site.   

 

4.2 Lab Methods 

4.2.1 Fire History 

 Fire-scarred cross sections were mounted on particle board with wood glue for stability.  

All samples were then sanded with progressively finer-grit sandpaper, beginning with ANSI 80-

grit (177–210 µm) and ending with ANSI 400-grit (20.6–23.6 µm) to display the annual ring 

boundaries with cellular resolution (Orvis and Grissino-Mayer 2002).  The widths of all annual 

rings of each sample were measured using a stereoscopic boom-arm microscope with Measure 

J2X computer software.  The tree-ring series were then crossdated visually and statistically 

(Holmes 1983, Yamaguchi 1991, Stokes and Smiley 1996, Grissino-Mayer 2001a).  Ring-width 

measurements were entered into COFECHA computer software as an undated series and 

compared to the nearby Gold Mine Trail tree-ring chronology created by Lisa LaForest and 

Jessica Slayton of the University of Tennessee Laboratory of Tree-Ring Science.  COFECHA 

conducted correlation analysis on each measured radius using 40-year tree-ring segments 

overlapped by 5 years to confirm statistical crossdating.  Correlation coefficients of each 

segment had to exceed 0.37 (p < 0.01) before being considered statistically significant and 

therefore crossdated.  After verification, statistically significant correlations for overlapped 

segments were then assigned and shifted to absolute dates with EDRM (Holmes 1999).  
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Once each sample was crossdated, I examined fire scars and assigned each scar a year of 

occurrence. Seasonality was determined by the position of the scar within the earlywood or 

latewood portion of the annual growth ring (Baisan and Swetnam 1990).  Seasonality 

assignments were described using the following letters: 

 Early season (E): The fire scar was located in the early portion of the earlywood, 

after the boundary of the previous annual growth ring.  This indicates a fire event 

in early spring (February, March, and April). 

 Middle season (M): The fire scar was located in the middle portion of the 

earlywood, indicating a fire event in the height of the growing season (May, June, 

and July). 

 Late season (L): The fire scar was located in the latter portion of earlywood or the 

first portion of latewood. This indicates a fire event in the end of the growing 

season (August, September, and October). 

 Dormant Season (D): The fire scar was located on the boundary of the latewood 

of the previous growth ring and before the earlywood of the following growth 

ring. 

 Undetermined (U):  The position of the fire scar in the annual growth ring was 

unclear and indeterminable. 

Because a tree must be initially scarred to record fires, rings were labeled as either 

“recorder” or “non-recorder” rings.  Recorder rings represent the span of years in which a tree 

can subsequently record fires after the initial scarring.  Non-recorder rings are those that formed 

before scarification, after basal wounds had completely healed, or after rings had been obscured 

by decay and erosion.  Differentiating between recorder and non-recorder rings allows fire 
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history data to be more accurately modeled by a statistical distribution and further validates 

subsequent statistical analyses (Grissino-Mayer 2001b).  Most fire history data can be more 

accurately modeled with the Weibull distribution rather than with a normal distribution 

(Grissino-Mayer 1995, Grissino-Mayer 2001b).  The Weibull distribution is most commonly 

used to model dynamic fluvial systems, providing flexibility and optimal fit for outliers, which 

are often excluded from statistical analysis (Gordon 2004). This distribution, in turn, provides 

more accurate statistical inference and validity of fire history data (Grissino-Mayer 2001b).   

I used the following descriptive statistics to analyze fire history data from the Cooper 

Road Trail study sites: 

 Mean Fire Interval:  The average number of years between recorded fire events. 

 Median Fire Interval:  The median value of the distribution for fire intervals. 

 Weibull Modal Interval:  The modal value that represents the most common 

frequency in the probability distribution. 

 Weibull Median Interval:  The 50
th

 percentile value of fire intervals associated 

with the Weibull distribution. 

 Lower Exceedance Interval:  The interval that describes a statistically significant 

short fire interval as derived from the Weibull distribution.  

 Upper Exceedance Interval:  The interval that describes a statistically significant 

long fire interval as derived from the Weibull distribution. 

 Maximum Hazard Interval:  The maximum fire-free interval a fire regime can 

experience before a fire event becomes highly probable; theoretically derived 

from the Weibull distribution. 
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After all fire-scarred samples were analyzed, the information was entered into FHX2 

computer software to determine the statistical distribution of the data, and evaluate fire 

frequency, fire seasonality, spatial differences, and temporal changes between the two study 

areas (Grissino-Mayer 2001b).  Spatial differences were tested using a 2 x 2 Chi-square 

contingency table, which essentially compares synchronous and asynchronous fire events 

between separate fire chronologies to determine statistical independence (Grissino-Mayer 

2001b).  Temporal changes were tested statistically using a t-test (difference of means), F-test 

(difference of variance), and a Kolmogorov-Smirnov test.  I used the period 1740 to 1817 as a 

control period to test for changes from 1818 to 1934, which represents the time before Euro-

American settlement of Cades Cove.  I then used the FHX2 graphics module to create graphs 

showing independent site and combined site fire chronologies for Cooper Road Trail. 

 

4.2.2 Superposed Epoch Analysis 

I used superposed epoch analysis to analyze tree growth in years prior, during, and after 

fire events.  Superposed epoch analysis aligns fire events and averages growth conditions prior 

and during fire events.  Bootstrapping methods are used to develop confidence intervals on 

simulated events (Grissino-Mayer 2001b).  Exceedance of the mean value from the calculated 

confidence intervals shows a statistically significant departure from average growth conditions, 

which in turn are related to the climate conditions that influenced the fire event.   

 

4.2.3 Stand Composition 

 Stand composition data were entered into a Microsoft Excel spreadsheet to calculate 

density, basal area, and importance values of each species at each study site.  Forest mensuration 
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data were calculated using methods described by Matthews and Mackie (2007).  Stand density 

was calculated by dividing the total number of individuals of a species by the plot area.  Basal 

area (BA) in m
2
 per tree was calculated by squaring DBH and then multiplying by 0.00007854.  

Stand dominance was calculated by dividing the total BA of each tree of a species on all plots by 

the total area of all measured plots.  Relative density was calculated by dividing the density of 

each individual species by the total of densities of all species and then multiplying by 100.  

Relative dominance was calculated by dividing the total BA of each individual species by the 

total of the BA of all species and then multiplying by 100.  Importance values were then 

calculated on a 200-point scale by adding the relative density and relative dominance of each 

species.  Relative frequency calculations were omitted because the presence or absence of tree 

species is indicated by a 0 value.  Size distributions for each site were sorted by type (yellow 

pine, hardwoods, and other species) and graphed by DBH and age of establishment using scatter 

plots in Microsoft Excel.  Seedling and sapling tallies from each study site were represented by 

relative dominance.   

 

4.2.4 Age Structure 

 Each core sample was thoroughly dried and glued to a wooden core mount.  The samples 

were then sanded using the methods described in section 4.2.1.  After sanding, each ring of each 

sample was counted and visually crossdated using the corresponding radius, if available, and 

using the local reference chronology from the Gold Mine Trail (Yamaguchi 1991, Stokes and 

Smiley 1996).  Most samples had at least one radius that intersected the pith.  If an increment 

core did not intersect the pith, a pith estimator was used to estimate the age of the tree 
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(Applequist 1958).  Age information was then entered into a Microsoft Excel spreadsheet, sorted 

by type, and then graphed by year of establishment and diameter at breast height.    

 

4.2.5 Volumetric Water Content and Duff Depth 

 The percentage of volumetric water content between the study sites was entered and 

compared statistically through the computer software package SPSS (Pallant 2007).  Measures of 

volumetric water content were first compared using Lavene’s test for equality of variance.  

Sample means were then compared using the independent samples t-test.  Duff depth 

measurements were averaged to represent the mean duff depth at each study site. 
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CHAPTER 5 

RESULTS 

5.1  Crossdating Quality 

 A total of 49 fire-scarred samples were collected from the two study sites along Cooper 

Road Trail, of which 35 were conclusively crossdated.  The total chronology spanned 330 years 

with individual series ranging from 40 to 164 years in length.  Samples that met or exceeded 

interseries correlations of 0.35 when compared to the Gold Mine Trail master chronology were 

included in the Cooper Road Trail fire chronology.  Most fire-scarred samples were graphically 

verified with especially narrow rings that formed in 1772–1774, 1856, 1872–1873, 1924–1925, 

1954, and 1985–1988.  Wide growth rings that formed in 1744–1745, 1859–1861, and 1937–

1939 were also especially useful.   

 

5.2 Fire History 

At CRX, a total of 44 fire scars from 15 samples were found between 1685 and 2008, 

with the earliest fire in 1735 and the latest fire in 1970 (Table 5.1).  A total of 28 fire events 

occurred during the period of reliability between 1749 and 1934.  At CRT, a total of 60 fire scars 

from 20 samples were found between 1678 and 2008, with the earliest fire in 1720 and the last 

fire in 1945 (Table 5.2).  A total of 36 fire events occurred during the period of reliability 

between 1810 and 1934. 
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Table 5.1  Fire-scarred, crossdated samples collected at CRX. 

Sample ID Inner/Outer Year Fire Years/Seasonality* Interseries         

Correlations** 

CRX323 1822–2007 1830U, 1833E, 1839U, 

1847E, 1857E, 1870E, 

1878U 

0.45 

CRX327 1865–1924 1902U 0.45 

CRX331A 1819–1886 1839E, 1853E, 1857E, 

1865E, 1870E, 1873U 

0.38 

CRX331B 1685–1778 1735U, 1749E, 1765E, 

1768M 

0.39 

CRX333B 1800–1926 1902E, 1916M 0.37 

CRX338 1932–2007 1970L 0.49 

CRX339 1772–1847 1796U, 1806E, 1809E, 

1813E 

0.40 

CRX340 1734–1799 1754E 0.45 

CRX341 1730–1796 1749E, 1757E 0.46 

CRX346 1740–1802 1757E, 1766E 0.41 

CRX348 1765–1811 1777E, 1787E 0.50 

CRX349 1745–1804 1772E, 1777E, 1780E 0.48 

CRX350 1761–1820 1777E, 1787E 0.39 

CRX351 1889–1933 1898E, 1906E, 1916E 0.52 

CRX352 1892–1935 1898E, 1906E, 1916E 0.40 

* E = early season, M = middle season, L = late season, U = undetermined 

** Interseries correlations = correlation coefficients with the master chronology with the sample 

removed 
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Table 5.2  Fire-scarred, crossdated samples collected at CRT. 

Sample ID Inner/Outer Year Fire Years/Seasonality* Interseries 

Correlations** 

CRT304 1783–1918 1856M, 1884E, 1902E 0.48 

CRT307 1868–1978 1871E, 1888E, 1896E, 1900E, 

1902L, 1906E, 1909E, 1912M, 

1916E, 1920E 

0.61 

CRT308 1823–1897 1872E, 1874E, 1889U 0.45 

CRT312 1780–1846 1814U 0.45 

CRT314 1678–1747 1740E 0.55 

CRT315 1858–1947 1906E, 1920E 0.41 

CRT316 1848–1933 1849E, 1854E, 1861E, 1900E, 

1922E 

0.45 

CRT317 1869–1921 1902E, 1909U 0.40 

CRT318 1872–1933 1896E, 1909E 0.46 

CRT319A 1823–1867 1838E 0.61 

CRT319B 1839–1878 1858E, 1862U 0.49 

CRT401 1870–1960 1888E, 1896E, 1902E, 1909M, 

1922E, 1926E, 1934M, 1945E 

0.54 

CRT402 1863–2007 1888E, 1916E 0.51 

CRT403 1792–1881 1818E, 1843E, 1847E, 1850E, 

1856E, 1863E 

0.50 

CRT404 1819–1870 1828E, 1835M, 1848M 0.35 

CRT406 1850–1949 1914E, 1923E, 1930E, 1934E 0.41 

CRT407A 1739–1802 1786E 0.40 

CRT407B 1833–1932 1912E, 1916E 0.41 

CRT411 1774–1837 1777U 0.46 

CRT412 1704–1769 1720U 0.42 

* E = early season, M = middle season, L = late season, U = undetermined 

** Interseries correlations = correlation coefficients with the master chronology with the sample 

removed. 
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The minimum fire intervals of the separate fire chronologies ranged from 1 to 10 years, 

while the maximum fire intervals ranged from 10 to 20 years. The mean fire intervals ranged 

from 3 to 6 years, while the median fire intervals ranged from 3 to 5 years (Table 5.3).  The 

Weibull modal intervals ranged from 1.9 to 3.8 years, while the Weibull median intervals ranged 

from 3 to 5.6 years.  The lower exceedance intervals were 1 to 2 years, while the upper 

exceedance intervals ranged from 6 to 11 years.  The maximum hazard interval was 24.4 years at 

CRX, compared to 5.7 years at CRT (Table 5.3). 

At CRX, fire events in 1777 and 1916 were the most prominent, with three scars 

observed in 1777 and 1916 (Figure 5.1, Figure 5.4A).  Fires that occurred in the dormant and 

early seasons accounted for 91.7% of all fires observed, while only 8.3% occurred during the 

middle and late seasons.  At CRT, the most prominent fire events were recorded in 1902 and 

1909 with four scars, and 1916 with three scars (Figure 5.2, Figure 5.4B).  Fires that occurred in 

the dormant and early seasons accounted for 87% of all fires observed, while 13% occurred 

during the middle and late seasons. 

The separate fire chronologies were then combined to evaluate fire history across a 

broader spatial scale.  A total of 60 fire intervals occurred during the period of reliability 

between 1740 and 1934 (Figure 5.3, Figure 5.4C).  During this period, a total of 97 scars were 

analyzed, 90.7% of which occurred during the dormant and early seasons, while 9.3% occurred 

during the middle and late seasons.  The mean and median fire intervals were relatively similar at 

approximately 3 years.  The Weibull modal and median intervals ranged from 1.6 to 2.7 years.  

The lower exceedance interval was relatively low (1 year), while the upper exceedance interval 

was 5.8 years.  The maximum hazard interval was 5.3 years (Table 5.3).  
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Table 5.3  Descriptive statistics calculated from the fire chronologies.* 

 CRX CRT Combined Site 

Fire History 

Mean Fire Interval 6.2 3.4 3.2 

Median Fire Interval 5.0 3.0 3.0 

Weibull Modal Interval 3.8 1.9 1.6 

Weibull Median Interval 5.6 3.0 2.7 

Lower Exceedance Interval 2.0 1.0 0.9 

Upper Exceedance Interval 10.9 6.2 5.8 

Maximum Hazard Interval 24.4 5.7 5.3 

*units = years 
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Figure 5.1  Crossdated fire events at CRX. 
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Figure 5.2 Crossdated fire events at CRT. 

 

 

 



www.manaraa.com

58 

 

 

Figure 5.3  Crossdated fire events from the combined fire chronologies of CRX and CRT. 

 

 

 

 

 

 



www.manaraa.com

59 

 

 

 

  . 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.4  Composite fire chronologies from (A) CRX, (B) CRT, and (C) the two sites combined. 
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5.3 Temporal Analysis 

Temporal changes were analyzed using 19 fire intervals in the pre-settlement period 

(1720–1818) and 43 fire intervals in the post-settlement period (1819–1934).  Although sample 

size was smaller in the pre-settlement period, there were enough intervals in the two periods to 

test for temporal changes in fire regimes (Grissino-Mayer 2001b).  Temporal analysis yielded 

significant differences between the mean fire intervals of the pre-settlement and post-settlement 

periods (p < 0.001) (Table 5.4).  The mean fire interval of the pre-settlement period was 5.1 

years, which is over twice as long as the mean fire interval of the post-settlement period at 2.4 

years.  No statistically significant differences were observed between the variances of the pre-

settlement and post-settlement periods.  However, significant differences were found between 

the distributions of fire intervals in the pre-settlement and post-settlement periods (p < 0.05) 

(Table 5.4).  

 

5.4 Spatial Analysis 

 The most significant and synchronous fires occurred in years 1777, 1847, 1902, 1906, 

and 1916.  Spatial analysis yielded significant differences in fire chronologies between the study 

sites.  Mean fire intervals were found statistically different between CRX and CRT (p < 0.05) 

(Table 5.5).  No statistically significant differences were observed in variance or statistical 

distributions between the study sites.  The Chi-square test for synchroneity (2 X 1 contingency 

table) showed that fire chronologies were statistically independent between study sites (p < 

0.005) (Table 5.5).   
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Table 5.4 Results of temporal changes analysis on the pre-settlement (1720–1818) and post–

settlement (1819–1934) periods for all fire-scarred samples in the combined Cooper Road Trail 

fire chronology. 

1720–1818 (n) 19 

1819–1934 (n) 43 

1720–1818 mean  5.2 

1819–1934 mean  2.5 

t-value 3.3 

p > t 0.003** 

1720–1818 variance 13.3 

1819–1934 variance 2.3 

F-value 1.8 

p > F 0.124 

KS d-statistic 0.4 

p > d 0.027* 

                   *p < 0.05, **p < 0.01 

 

 

Table 5.5 Results of spatial analysis for differences in fire intervals and fire date synchroneity 

between the CRX and CRT fire chronologies. 

t-value –2.21 

p > t 0.03* 

F-value: 1.98 

p > F 0.07 

KS d-statistic 0.32 

p > d 0.08 

2x1 Chi-squared 18.76** 

2x2 Chi-squared 0.04 

   *p < 0.05, **p < 0.005 
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5.5 Superposed Epoch Analysis 

Using SEA, I found significant relationships between climate and fire in both test 

periods.  During the pre-settlement period (1720–1818), SEA yielded below average climate and 

tree growth t–3 years before the fire event, exceeding 95% significance at the lower confidence 

interval (Figure 5.5).  Average climate conditions existed from t–1 to 5 years after the fire event.  

During the post-settlement period (1819–1934), slightly below average climate conditions 

existed until the year before the fire event, exceeding 95% significance at the lower confidence 

interval (Figure 5.6).  Average conditions were observed after the fire event.   

Although SEA found no statistically significant relationships when analyzing the entire 

period of reliability (1740–1934), t–3 years before the fire event came very close to exceeding 

the 95% lower confidence interval (Figure 5.7).  During and after the fire event, tree growth 

remained average throughout the 5-year window.  In general, the entire period of reliability 

provided a more comprehensive model on the regional influence of climate on fire events.  This 

period provided information on more meaningful relationships between climate, tree growth, and 

fire activity, despite anthropogenic influence throughout both test periods. 

 

5.6 Stand Composition and Age Structure 

 A total of 534 trees were surveyed between the two sites, 242 at CRX and 292 at CRT.  

The near site yielded a total of 1210 stems per ha, with 9.17 total m
2
 per ha (BA) (Table 5.6).  

Eastern white pine had the greatest density, followed by red maple, black gum, American holly, 

and pitch pine.  Eastern white pine also had the highest number of stems per hectare, followed by 

pitch pine, Virginia pine, scarlet oak, and red maple.  Tree species yielding the highest  
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Figure 5.5  Results from superposed epoch analysis showing the relationship between 

climate, tree growth, and fire events during the pre-settlement period (1720–1818). 

*CI = Confidence Interval 

 

 

 



www.manaraa.com

64 

 

 
 

Figure 5.6  Results from superposed epoch analysis showing the relationship between 

climate, tree growth, and fire events from post-settlement period (1819–1934). 

* CI = Confidence Interval 
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Figure 5.7  Results from superposed epoch analysis showing the relationship between 

climate, tree growth, and regional fire events for the combined fire chronology. 

* CI = Confidence Interval 
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importance value percentages were eastern white pine, pitch pine, red maple, and black gum,  

while the least important species were American chestnut, black oak, and mountain magnolia 

(Table 5.6).  Red maple, eastern white pine, and scarlet oak were the dominant seedlings, while 

eastern white pine, American holly, sourwood, and red maple were the dominant saplings (Table 

5.7).  No yellow pine seedlings or saplings were observed at CRX.  Seedlings with least 

dominance were sassafras, eastern hemlock, and mountain magnolia.  Saplings with least 

dominance were black oak, black gum, and eastern hemlock (Table 5.7).   

A total of 91 trees were successfully aged at CRX, yielding a mean age of 70.45 years 

and mean size class of 20.1 cm DBH.  White oak, pitch pine, and Virginia pine showed the 

strongest size-age relationship (Figure 5.8).  The youngest species at this site were eastern 

hemlock, mountain magnolia, and red maple.  The oldest individuals were pitch pine, Virginia 

pine, and white oak.  At the near site, pine and oak species established until approximately 1900.  

Only four oaks had established by 1930.  Eastern white pines established continuously from 

1917 until the mid-1950s.  At that point, red maple, eastern white pine, and American holly 

became dominantly established.  

  The far site (CRT) yielded a total of 1460 stems per ha, with 7.72 total BA (m
2
 per ha) 

(Table 5.8).  Red maple showed greatest density, followed by Virginia pine, eastern white pine, 

black gum, and scarlet oak.  Virginia pine showed greatest dominance, followed by scarlet oak, 

red maple, and eastern white pine.  The species with highest importance value percentages were 

red maple, Virginia pine, eastern white pine, and scarlet oak, while the least important species 

were pignut hickory, chestnut oak, and sourwood (Table 5.8).  American holly, mountain 

magnolia, shortleaf pine, white oak, red oak, black oak, and sassafras were not surveyed at this 

site.  The dominant saplings observed were eastern white pine and red maple.  Red maple,  
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Table 5.6  Measures of stand composition at CRX. 

Species Stems/ha 
Relative 

Density 
BA/ha 

Relative 

Dominance 

Importance 

Value (%) 

red maple 120 9.92 0.41 4.49 7.20 

American chestnut 5 0.41 0.00 0.03 0.22 

pignut hickory 0 0.00 0.00 0.00 0.00 

American holly 75 6.20 0.09 0.99 3.59 

mountain magnolia 10 0.83 0.01 0.06 0.45 

black gum 120 9.92 0.33 3.61 6.77 

sourwood 40 3.31 0.17 1.81 2.56 

shortleaf pine 10 0.83 0.38 4.13 2.48 

pitch pine 75 6.20 1.52 16.54 11.37 

eastern white pine 575 47.52 4.37 47.64 47.58 

Virginia pine 60 4.96 0.63 6.90 5.93 

white oak 10 0.83 0.14 1.54 1.19 

scarlet oak 25 2.07 0.46 5.07 3.57 

chestnut oak 20 1.65 0.23 2.51 2.08 

red oak 5 0.41 0.27 2.98 1.70 

black oak 5 0.41 0.00 0.04 0.23 

sassafras 35 2.89 0.06 0.65 1.77 

eastern hemlock 20 1.65 0.09 1.01 1.33 

Total 1210 100.00 9.17 100.00 100.00 
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Table 5.7  Measures of stand composition among seedlings and saplings at CRX. 

 Seedlings   Saplings   

Species Number Stem/ha  

Relative 

Density Number Stem/ha 

Relative 

 Density 

red maple 94 470 41.05 8 40 7.14 

American holly 12 60 5.24 20 100 17.86 

black gum 13 65 5.68 2 10 1.79 

sourwood 13 65 5.68 16 80 14.29 

eastern white pine 50 250 21.83 56 280 50.00 

scarlet oak 24 120 10.48 0 0 0.00 

chestnut oak 14 70 6.11 2 10 1.79 

black oak 0 0 0.00 1 5 0.89 

eastern hemlock 2 10 0.87 1 5 0.89 

sassafras 1 5 0.44 3 15 2.68 

mountain magnolia 6 30 2.62 3 15 2.68 

Totals 229 1145 100.00 112 560 100.00 
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Figure 5.8 Age structure and size distributions at CRX. 

*Other hardwoods = red maple, American holly, black gum, mountain magnolia, sassafras, 

and sourwood 

**Other conifers = eastern white pine and eastern hemlock  
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eastern white pine, and scarlet oak were the dominant seedlings (Table 5.9).  No yellow pine 

seedlings or saplings were recorded at this site. 

A total of 131 trees were successfully aged at CRT, yielding a mean age of 60.35 years 

and mean size class of 16.2 cm DBH.  Tree establishment showed an almost uniform 

distribution, with only a few outliers.  The youngest species at this site were eastern white pine 

and eastern hemlock, while the oldest individuals were red maple, black gum, and pitch pine 

(Figure 5.9).  The oldest pitch pine established in 1902.  Red maple, black gum, and scarlet oak 

established throughout the 1920s, followed by a surge of Virginia pine from the 1930s through 

the 1950s.  Eastern white pine and eastern hemlock established abundantly from 1972 until 

present.  

 

5.7  Volumetric Water Content and Duff Depth 

 Mean VWC of the top 12 cm of soil ranged from 5.67% to 5.83% at the two study sites 

(Table 5.10).  Variances between the sample sites were considered statistically equal.  The mean 

percentage of VWC between CRT and CRX did not differ significantly.  Mean duff depth ranged 

between 4 and 5.5 cm (Table 5.11).  
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Table 5.8  Measures of stand composition at CRT. 

 

 

Species Stems/ha Relative 

Density 

BA/ha Relative 

Dominance 

Importance 

Value (%) 

red maple 485 33.22 1.30 16.84 25.03 

American chestnut 0 0.00 0.00 0.00 0.00 

pignut hickory 5 0.34 0.01 0.12 0.23 

American holly 0 0.00 0.00 0.00 0.00 

mountain magnolia 0 0.00 0.00 0.00 0.00 

black gum 135 9.25 0.29 3.75 6.50 

sourwood 45 3.08 0.17 2.21 2.65 

shortleaf pine 0 0.00 0.00 0.00 0.00 

pitch pine 25 1.71 0.41 5.25 3.48 

eastern white pine 260 17.81 1.30 16.77 17.29 

Virginia pine 280 19.18 2.29 29.59 24.39 

white oak 0 0.00 0.00 0.00 0.00 

scarlet oak 125 8.56 1.78 23.01 15.79 

chestnut oak 20 1.37 0.08 1.09 1.23 

red oak 0 0.00 0.00 0.00 0.00 

black oak 0 0.00 0.00 0.00 0.00 

sassafras 0 0.00 0.00 0.00 0.00 

eastern hemlock 80 5.48 0.11 1.37 3.43 

Totals 1460 100.00 7.72 100.00 100.00 
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Table 5.9  Measures of stand composition among seedlings and saplings at CRT. 

 Seedlings   Saplings   

Species tallied stem/ha  

Relative 

Density tallied stem/ha 

Relative 

Density 

red maple 94 470 41.05 8 40 7.14 

American holly 12 60 5.24 20 100 17.86 

black gum 13 65 5.68 2 10 1.79 

sourwood 13 65 5.68 16 80 14.29 

eastern white pine 50 250 21.83 56 280 50.00 

scarlet oak 24 120 10.48 0 0 0.00 

chestnut oak 14 70 6.11 2 10 1.79 

black oak 0 0 0.00 1 5 0.89 

eastern hemlock 2 10 0.87 1 5 0.89 

sassafras 1 5 0.44 3 15 2.68 

mountain magnolia 6 30 2.62 3 15 2.68 

Totals 229 1145 100.00 112 560 100.00 
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Figure 5.9 Age structure and size distributions at CRT. 

*Other hardwoods = red maple, American holly, black gum, mountain magnolia, sassafras, 

and sourwood 

**Other conifers = eastern white pine and eastern hemlock,  
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Table 5.10  Descriptive statistics of volumetric water content. 

 

Location N Mean 

Std. 

Deviation 

Std. Error 

Mean 

Volumetric 

Water  Content 

CRT 30 5.67 1.56 0.29 

CRX 30 5.83 1.51 0.28 

 

 

 

 

Table 5.11  Measures of duff depth (cm). 

Location CRXA CRXB CRTA CRTB 

10 T 1.9 3.5 5.5 3.0 

B 3.5 3.5 9.0 5.0 

20 T 2.5 2.5 6.1 4.0 

B 3.8 6.3 4.6 6.2 

30 T 3.0 6.0 4.4 8.4 

B 2.8 3.0 6.5 7.4 

40 T 4.5 6.0 6.4 5.5 

B 6.4 6.0 3.2 5.4 

50 T 5.5 3.5 4.0 5.4 

B 3.2 4.0 5.6 4.0 

Mean 3.71 4.43 5.53 5.43 

Site Mean          4.07      5.41 

* T = measured at top of transect; B = measured at bottom of transect 

** A= subplot A; B = subplot B 
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CHAPTER 6 

DISCUSSION 

My analyses of fire-scarred samples and forest surveys provided baseline information 

about fire regimes and the historic range of variation (HRV) near Cades Cove.  The fire regimes 

between my two study sites were similar, but fires were not synchronous.  I expected to find 

more synchronous fires between my study sites.  Based on my original research objectives, I 

found that study areas close in proximity, separated by distinct topography and possible 

differences in land use, could have completely different fire histories, species compositions, and 

trends of establishment.  This allowed me to draw better inferences on the true characteristics of 

fire regimes in this part of the southern Appalachian Mountains.  The results from this study 

suggest that historic fire regimes in the western part of GSMNP were characterized by low-

severity surface fires that were distinct by topographic boundaries.  The differences between 

study sites further suggest topographic boundaries do indeed affect various components of fire 

regimes. 

 

6.1 Comparisons between Study Sites 

6.1.1 Fire History 

 One of the most important aspects of this study was verification of statistically significant 

differences between mean fire intervals of topographically separated study sites.  My results 

show that historic fire regimes near Cades Cove were characterized by low-severity surface fires, 

but were distinctly different in two areas separated by approximately 5 km.  Only five fire events 

occurred synchronously between study sites, those in 1777, 1847, 1902, 1906, and 1916.  
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Although widespread fires were uncommon, they were not absent.  Years in which synchronous 

fires occurred show that widespread fire events were possible, but unlikely because of the more 

frequent fires that consumed most available fuels and because of the topographic barriers that 

limited the extent of fire spread.   

Compared to site nearest Cades Cove (CRX), the distant site (CRT) had more frequent 

fires.  Mean and median fire intervals at CRT were almost half that of CRX, and the Weibull 

modal and median intervals were 2 to 2.5 years less at CRT.  At CRT, I also found some 1-year 

intervals between fires from 1840 to 1870.  Another important difference between the study sites 

is the stark contrast in maximum hazard intervals.  The maximum hazard interval delimits the 

critical threshold for fire based on fire-free intervals.  This roughly 18 year difference between 

sites likely represents the different intensities of land use and suggests that CRT was more 

heavily used than CRX.  This suggests that greater population pressures or increased effects of 

land use influenced the amount of fine fuels and logging slash.  Therefore, fuels may have been 

in greater abundance after heavier disturbance.  Consequently, this would subject the site to more 

frequent fires.  Pyle (1988) also reported that most areas experienced fires after heavy 

disturbance, most likely after mechanical logging operations.  Furthermore, Cooper Road Trail 

likely served as a logging access road, as it was the most convenient route into Cades Cove at 

that time.  However, fewer fire-scarred samples were found at CRX, possibly due to the closer 

proximity of Cades Cove and more active fire suppression efforts to protect nearby homes or 

structures. 

Approximately 90% of all fires observed occurred in the dormant/early seasons.  This 

indicates fire seasonality in GSMNP was mostly influenced by natural ignitions because this 

period is when most fires have occurred without human influence.  However, humans may also 
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have influenced fire activity after Euro-American settlement of Cades Cove.  The presence of 

humans in GSMNP has been documented as far back as ca. 10,000 years before present, or to the 

Early Archaic period (8,000–6,000 BC) (Bass 1977).  Therefore, anthropogenic burning 

practices can be considered part of the natural fire regime.  However, naturally ignited wildfires 

are more likely to occur in the fall and spring, when fuels are generally drier and both frontal and 

convective thunderstorms dominate the southern Appalachians.  Furthermore, this would explain 

why I found most fire scars in the generally accepted fire season.  Naturally ignited fires are now 

used for ecological benefit if no threat exists to cultural or natural resources (NPS 2008).  

Overall, my study suggests that fires were more frequent prior to establishment of 

GSMNP, as often as one fire every 3 to 6 years.  The maximum hazard interval also provided 

further evidence that when fire-free intervals exceed the critical threshold, it is highly probable 

that the observed forests will experience wildfire.  This information, in turn, should help forest 

management officials use fire to maintain and create conditions that were present in the historic 

fire regime.  Fire regime condition classes are assigned to landscapes to describe departure from 

natural and historic conditions of the fire regime, without modern human influence (FRCC 

2008).  The fire regime condition class descriptions in GSMNP were historically categorized as 

Class 1: 0–35 year fire frequency and low to mixed severity.  Now, current conditions are far 

different than historic reference conditions.  Mixed oak-pine forests should now likely be 

categorized as Class 3: 35–100 year fire frequency and mixed severity (FRCC 2008).    

    

6.1.2 Stand Dynamics 

Both study sites varied considerably with age, size, and composition of trees.  At CRT, 

pitch pine and Virginia pine established from 1870 until 1897, with only one Virginia pine 
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having established later around 1922.  Only one pitch pine core was successfully aged, indicating 

the tree established in 1902, a date that aligns with a fire in 1902 recorded at both sites.  A 

coinciding fire event most likely represents the last time in which pitch pines successfully 

established at both sites.  Scarlet oak and Virginia pine continued establishing until the 1950s, 

but ceased establishing after the last recorded fire at CRT in 1945.  Virginia pine, a disturbance 

species often referred to as “old-field” or scrub pine, was far more abundant, suggesting that this 

site experienced more intense disturbance in the 20
th

 century.  Thereafter, establishment of 

eastern white pine and red maple increased considerably.  Black gum and sourwood also 

established consistently throughout the 20
th

 century. 

 Unlike CRT, which exhibited cohort establishment of Virginia pine, the establishment 

patterns at CRX were far more consistent among various species.  The oldest individual at this 

site was a white oak that established around 1813.  This tree may have served as a “witness tree” 

or boundary marker (Orwig and Abrams 1994).  A few oaks established around 1930, followed 

by an enormous surge of eastern white pines.  Red maple established throughout the 1900s and 

increased in abundance in 1955.  This study site probably experienced more human-related 

impacts because of its proximity to Cades Cove, thus explaining less frequent fires because of 

more active fire suppression efforts.  The basal area of trees was greater at CRX, but tree density 

was lower.  This site had a more open understory.  It most likely represents historic conditions of 

less disturbed forests in GSMNP.    

 Although this study did not directly quantify other forms of disturbance, they should be 

noted.  In the early 20
th

 century, the widespread mortality of the American chestnut reduced 

forest canopies by approximately 10–15%, resulting in vast successional changes throughout the 

southeastern U.S. (Anagnostakis 1987, Duffy and Meier 1992).  The effects in the southern 
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Appalachian Mountains have been extensively studied (Woods and Shanks 1959, Stephenson 

1986), but the full impact on succession still remains a question.  Based on basal stem sprouts 

found within my study plots, it is likely that chestnut will continue to sprout, but not become a 

dominant canopy tree because the blight causes mortality in saplings.  These trees played a 

prominent role in the historic composition of mixed oak-pine forests, and their decline should 

also be considered when discussing possible reasons for widespread changes in succession.  

However, the role of American chestnut in historic fire regimes of the southern Appalachian 

Mountains may never be fully understood.  

 The effects of southern pine beetle infestation were highly visible within my study sites.  

Fire and pine beetle mortality are obviously related through fuel loading and subsequent fire, as 

yellow pines are dependent on fire disturbance (Schowalter et al. 1981, Richardson 1998).  In 

general, both study sites lacked yellow pine regeneration and showed heavy decline from pine 

beetle mortality.  The apparent lack of recent fire may also be responsible for such high mortality 

due to limited amounts of resin production.  Resin production in yellow pines is a natural defense 

and increases after exposure to fire (Fritts 1976, Knebel and Wentworth 2007).  Fire suppression 

may therefore be responsible for increased susceptibility of pine forests to southern pine beetle 

infestation. 

    

6.1.3 Land-Use History 

My study shows that the extent, type, and intensity of human-related disturbances likely 

affected the fire regimes, stand composition, and structure of both sites differently, and indicated 

that CRT may have been more heavily disturbed despite the distance from Cades Cove and 

concentrated settlement.  CRX had fewer fires and greater species diversity.  To better 
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understand these differences, I compared the study sites based on historic documentation of land 

ownership and proximity to concentrated settlement.  Major differences arose between the study 

sites.   

In general, CRT showed signs of heavier disturbance.  Overall, this site had less species 

diversity among seedlings, saplings, and trees > 5 cm DBH.  The stand consisted of mostly 

young trees with less basal area.  Virginia pine was more dominantly established because it 

favors open conditions created after disturbance, which most likely indicates more intense land-

use or grazing pressures.  CRX showed greater diversity among canopy species.  In contrast, 

American chestnut, American holly, mountain magnolia, shortleaf pine, white oak, red oak, 

black oak, and sassafras were completely absent from CRT.  

 Fire chronologies showed variation between study sites, most likely due to the extent and 

intensity of disturbance, and topographic separation.  CRT showed a more frequent fire return 

interval of 3.4 years, whereas the fire return interval at the near site was 6.2 years.  The 

differences in upper exceedance intervals also help explain the probability of wildfire in these 

forests.  CRX had an upper exceedance interval approximately 5 years longer than CRT, further 

suggesting different degrees of disturbance.  However, CRX, which appeared to be far less 

disturbed, had an upper exceedance interval of 11 years, which is an unusually long fire-free 

period.  My research suggests that sites with greater pressures had been burned more frequently, 

as this was the most common and affordable method of forest maintenance at that time.  Settlers 

relied on this practice to increase conditions favorable to livestock and wild game.  

 The extent to which Native Americans burned the landscape still remains a prominent 

question among fire ecologists and fire managers (Pyne 1982, Jurgelski 2008).  Native and Euro-

Americans burned the forests in the fall and early spring for many reasons: (1) to gather 
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chestnuts, (2) to increase abundance of grasses, (3) to improve berry yield, (4) to improve wild 

game habitat, and (5) to hunt wild game (Harmon 1982, Pyle 1988).  Religious and cultural 

reverence for fire also shows its place among Native American tribes.  Burning the landscape 

may have been practiced ritually in the fall to indicate the change in season and shift in behavior 

for the colder months ahead (Fowler and Konopik 2007).   

 Early Euro-American settlers likely adopted burning practices from Native Americans 

(Pyne 1982).  Cades Cove is an area with a history of early relations between Native Americans 

and Euro-American settlers.  Initial settlement efforts by the Oliver family would have never 

succeeded without the help of the Native Americans who occupied the cove at the time of their 

arrival.  The Native Americans provided sustenance to the starving settlers when they arrived in 

the fall of 1818 without ample time to begin agriculture (Dunn 1988).  These early interactions 

suggest that settlers were influenced by Native American practices to increase the chances of 

survival in an undeveloped landscape. 

Adjacent valley bottoms were used for homesteads and row-crop agriculture, while ridges 

or upper limits of watersheds were logged or grazed (Pyle 1988).  This process usually involved 

fire in some manner, whether by felling single trees or burning entire portions of the landscape.  

This is supported by the visible increase of fires after Euro-American settlement in Cades Cove.  

Euro-Americans indeed modified this practice to create vegetation structure favorable to 

livestock (Pyle 1988).  Settlers also harvested pitch pines for their resin to create turpentine and 

used various oaks for tanbark, which was used to treat and stain leather.  The extents of these 

practices are unknown, but only a small percentage of trees in GSMNP were used for these 

purposes (Pyle 1988).  All these reasons help explain why a discrepancy is found in fire histories 

between areas separated by complex topography.  Furthermore, it explains why I found only five 
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synchronous fire events between my study sites, where the most widespread fires occurred in the 

early 20
th

 century.  The fires may have been the result of fuel loading from logging practices.  

Although no direct evidence shows mechanized logging occurred directly on my study sites, the 

Morgan-Butler Timber Company did own most of the property at CRT. 

  

6.2 The Influences of Topography and Fire 

 Most importantly, my study suggests that topographic boundaries may play a primary 

role in determining the size, type, and severity of wildfires in mixed oak-pine forests of the 

Appalachian Mountains.  Although many factors contribute to fire behavior, surface fires in the 

southern Appalachian Mountains are largely influenced by topographic boundaries, limiting the 

extent to which they spread.  Cohen et al. (2007) documented wildfires ignited by lightning in 

the Park.  These fires were not suppressed and exhibited variable behavior for several reasons, 

including fuel type, fuel moisture, stand density, and topographic barriers.  These factors support 

the abundance of asyncronous fires I documented at the two sites, and the work of Cohen et al. 

supports the argument that topographic boundaries are a major influence on fire regimes in 

GSMNP.   This explains the asynchronous fires at the two sites, because most fires were 

contained by topographic boundaries and most certainly were uninhibited before governmental 

regulation, as efforts in fire suppression were enforced after creation of the Park.   

Frequent burns likely facilitated the growth of herbs and grasses, recycled available 

nutrients, and reduced competition, allowing optimal conditions to sustain oak and pine species 

in the canopy and understory.  Harrod et al. (2000) found that richness and diversity among 

herbaceous species increased 8 to 10 years after a burn on permanent plots, when compared to 

unburned plots.  Forests with oak and pine as the dominant species would, in turn, create 
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microsite conditions that favored frequent surface fires.  Pine needles provided fine fuels, and an 

open canopy would allow more penetration of sunlight, drying the ground layer and increasing 

susceptibility to fire.  My study also provides evidence that forest stands were historically 

dominated by large oak and yellow pine species.  These stands were characterized by frequent, 

low-severity surface fires that supported a more diverse forest community, depending on the type 

and intensity of land use.  However, CRT showed more frequent fires, but less diversity among 

canopy trees.  This suggests that more frequent fires could actually inhibit tree diversity, 

although the lack of diversity may also be attributed to selective logging and removal of trees to 

create suitable grazing conditions.  Furthermore, fire generally increases regeneration among oak 

and pine species, while maintaining a more diverse understory with less susceptibility to invasive 

species (Harmon 1984). 

    

6.3 The Spatial and Temporal Characteristics of Fire Regimes near Cades Cove 

Spatial analysis between the separate fire chronologies showed that fire activity was 

unrelated between my study sites except for five synchronous fire events.  This also explains 

why I found such disparity between the fire and vegetation properties of the two study sites.  

Temporal analysis of the combined fire chronologies yielded interesting differences between the 

pre-settlement (1740–1818) and post-settlement periods (1819–1934).  The results showed 

statistically significant differences between mean fire intervals in the pre-settlement and post-

settlement periods.  The mean fire interval in the pre-settlement period was over twice as long as 

the post-settlement period.  Differences in variance and distributions also show that fires in the 

pre-settlement period were less frequent when compared with fires during the post-settlement 

period.  Population pressures could account for increased fire frequency throughout that time and 
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region.  Although sample depth of the control period was less than half of that for the test period, 

it does provide useful information about fire intervals dominantly influenced by climate or 

Native American burning practices in the pre-settlement period.  Samples dated to the pre-

settlement period are expected to be more representative of the natural conditions of the fire 

regime, before heavy Euro-American impact. 

Superposed epoch analysis showed significant differences between climate and fire 

events in the pre-settlement and post-settlement periods.  In the pre-settlement period, year 3 

before the fire events showed a significant relationship with climate at the lower 95% confidence 

interval, suggesting that fire frequency was influenced by limiting climatic conditions, most 

likely drought, three years prior to fires.  Although not statistically significant, slightly below 

average climate conditions existed two years before the fire event, followed by average climate 

the year before and during the fire event.  In the post-settlement period, the year before the fire 

event showed a significant relationship at the lower 95% confidence interval.  This most likely 

indicates fire activity influenced by yearly anthropogenic burning practices, or climate conditions 

that were favorable for annual burning.  Average climate occurred throughout the remainder of 

the event window.  When analyzing the entire period of fire events, year 3 before the fire year 

comes close to 95% significance, but does not exceed the confidence interval.  Although not 

statistically significant, it is important to note that climate was limiting 1 to 3 years before the 

fire event for the entire period of reliability, allowing better inference of the regional relationship 

between fire and climate.  Overall, the below average conditions suggest that drought 

preconditioned fuels up to three years prior to fire events.  These results help further explain the 

natural fire regime in the western portion of GSMNP.         
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6.4 Changes in Species Composition due to Fire Suppression 

 Forest surveys at both sites indicated succession to shade-tolerant species, such as eastern 

white pine, red maple, and eastern hemlock.  These species should be restricted to more mesic 

sites or coves that support subsequent regeneration of similar species.  Evidence found at my 

study sites suggest that historic oak-pine forests currently are not supporting establishment of 

yellow pine species because of increased stand density and dominance of shade-tolerant species.  

Increased duff layers caused by fire suppression also seem to have restricted yellow pine and oak 

seedlings, allowing optimal conditions for establishment of other hardwoods and conifers.  

Yellow pine prefer open seedbed habitat and are most likely to regenerate when seedbed habitat 

has experienced surface fire and receives ample sunlight.  Canopy openings would have 

increased from widespread chestnut mortality and mortality caused by pine beetles.  Fire 

suppression would have increased stand density in both the canopy and understory (Harrod et al. 

2000, Land and Rieske 2006).  Increased stand density, decreased dominance of yellow pine, and 

lack of successful pine and oak recruitment are clearly outcomes of fire exclusion.  The 

combination of these factors accounts for the change in composition of the forest, from historic 

mixed oak-pine communities to shade-tolerant, fire-intolerant species.  Fire suppression likely 

has decreased the natural tolerance of yellow pines to pine beetle infestation.  Frequent fire 

would have allowed more resin production, serving as a natural defense to bark beetle infestation 

and other insects and pathogens (Knebel and Wentworth 2007).  

 

6.5 Future Trends of Forests along the Cooper Road Trail 

 Surveys of mature trees, seedlings, and saplings from both of my study sites strongly 

suggest that oak-pine forests near Cades Cove are experiencing mesophication and succession to 
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fire-intolerant hardwoods.  Mesophication is a term used to describe the transition of a formerly 

xeric environment to a moist, mesic environment (Nowacki and Abrams 2008).  Both sites 

showed increased abundance of eastern white pine, eastern hemlock, and red maple.  Half of the 

abundance of saplings was composed of eastern white pine.  The most notable lack of species in 

the seedling/sapling tallies are yellow pines and oak.  Although few scarlet and chestnut oaks 

were observed, black gum and sassafras are, and will likely remain, a prominent mid-story 

species.  The abundance of mountain laurel was not quantified in this study, though its 

abundance has increased due to canopy gaps caused by pine beetle infestation and fire exclusion 

(Monk et al. 1985, Lafon et al. 2007).  If management practices and pests remain the same, 

eastern white pine and red maple will dominate the future canopy of these forests.  Fire-tolerant 

and fire-adapted yellow pines and oaks were previously more abundant in the southern 

Appalachian Mountains due to more frequent fires.  Without fire, these forests will continue 

succession to hardwood dominance, while yellow pines will continue to decline.       

 

6.6 Comparisons to Previous Research 

Harmon (1982) found the mean fire interval for the westernmost portion of GSMNP to be 

12.7 years.  His study had several conclusions relevant to the findings in this study.  First, he 

stated that his study probably underestimated the actual number of fires.  In some cases, low-

intensity surface fires may not have caused basal wounds, limiting the actual number of fires 

recorded by the tree.  Second, he noted that 96% of the pine forests he sampled had burned 

between 1929 and 1940.  Finally, he concluded by stating that more information prior to 1856 

was needed to accurately assess the historic fire regime.   
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My study provides fire interval information as far back as 1720.  Tree-ring measurements 

were conclusively crossdated using statistical techniques, providing finer resolution of fire events 

in the tree-ring record than was possible in Harmon’s study.  We also were able to use much 

remnant wood that could be statistically crossdated, whereas Harmon produced his study before 

statistical crossdating was widely accepted among fire ecologists.  His study used only samples 

extracted from living trees and the tree rings were not crossdated.   The data obtained from my 

study were also modeled with a statistical distribution, allowing additional inferences on the 

characteristics of the historical range of variation in GSMNP.   

Several reasons exist for discrepancies in fire frequency between the two studies, 

including field and laboratory methods, elevation, topography, vegetation structure, sample area, 

sample methodology, and the scale of anthropogenic influence.  I was allowed to remove 

samples using a chain saw, which tremendously improved sample quality, sample depth, and 

data quality.  Chain saws were much more efficient than manually hand sawing fire-scarred 

samples.  We also chose yellow pine species to maximize the potential for a robust fire history, 

rather than using hardwoods, which usually decay much faster.  My study focused more on the 

spatial and temporal variation of fire regimes in mixed oak-pine forests, while Harmon’s study 

included fires found over a much broader spatial area, including Table Mountain pine stands, 

which occupy higher, more xeric ridges.  While Harmon’s study addressed fire history for the 

entire westernmost portion of GSMNP, my study focused on a more localized area.   

Guyette and Spetich (2003) found similar mean fire intervals for oak-pine forests in the 

Boston Mountains of Arkansas.  Their study analyzed four periods of fire history during human 

settlement: the Native American (1680–1820), Euro-American (1821–1880), Regional 

development (1881–1920), and Fire suppression (1920–2000).  They found mean fire intervals 
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during the Native American period ranging from 4.5 to 16 years, which coincides with the less 

frequent mean fire interval I found during the pre-settlement period in GSMNP.  During the 

Euro-American and Regional development periods, they found mean fire intervals that ranged 

between 1 and 5 years.  This also coincides with the more frequent fires I found during the post-

settlement period.  Although I was unable to reliably analyze fire history from 1920 to present, 

they found mean fire intervals in the fire suppression period ranging from 60 to 80 years.  They 

also found similar fire seasonality, with most fires occurring in the dormant and early seasons.  

When comparing the relationship between mean fire intervals and population density, they found 

a positive association during the Native and Euro-Americans periods, and an inverse association 

during the Regional development period.  These results show that as population density 

increased during the Native and Euro-American periods, mean fire intervals also increased.  This 

finding is similar to the increase in mean fire intervals I found during the post-settlement period, 

coinciding with an increased population in Cades Cove between 1850 and 1880.  Likewise, the 

inverse relationship found in Arkansas in the Regional development period shows that 

population density increased and mean fire intervals decreased.  This was most likely due to fire 

suppression.   

Although studies in soil charcoal provide no annually-resolved data about fire frequency, 

they are quite relevant when analyzing the historic fire regime.  The relative abundance of 

macroscopic charcoal found at various depths within a soil core may reveal changes in fire 

activity.  A study conducted by Welch (1999) examined macroscopic soil charcoal in yellow 

pine forests throughout the southeastern United States.  She found macroscopic charcoal in each 

soil core obtained in Cherokee National Forest, with the greatest amounts at depths of 10–20 cm 

and 60–70 cm.  The greatest abundance was found in the upper depths, which most likely 
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indicated the widespread fires that were documented after logging operations.  However, no 

consistencies were found between amounts of charcoal at different depths.  Although charcoal 

can be deposited by overland flow, she found that the presence or absence of macroscopic 

charcoal did not vary according to slope position. 

 Hass (2008) conducted a study which analyzed macroscopic soil charcoal at Gum Swamp 

in the Cades Cove area of GSMNP.  She found an increase in charcoal abundance between the 

early 1800s and 1950s, which was most likely related to agricultural fires.  A subsequent decline 

in charcoal concentrations after 1950 was likely associated with fire suppression.  Her study 

corroborates the history of fire I developed using tree-ring data.  The increase of charcoal 

concentrations from the early 1800s is consistent with the increase of fires I found in the post-

settlement period, as well as with the subsequent decline following the creation of the Park in 

1934.       

 Underwood (2010, unpublished data) is currently conducting fire history research in 

mixed oak-pine forests of GSMNP using macroscopic soil charcoal.  His study aims to extend 

the fire history of these forests by identifying trends in fire history and species composition that 

predate the tree-ring record.   Taxonomic classification and AMS radiocarbon dating of 

macroscopic soil charcoal fragments revealed that over 75% of 500 individual fragments were 

from southern yellow pine species.  The oldest fragment came from a southern yellow pine that 

burned ca. 2,800 years ago.  This research further complements the fire history developed from 

tree-ring data, and will also help determine the transition of tree species prior to current forest 

inventories.  Furthermore, this study provides crucial evidence of fire in GSMNP that predates 

the tree-ring record, which most likely relates to fire regimes dominated by lightning ignitions.     
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6.7 Implications for Management 

 Frequent prescribed burns would be very beneficial for this area of GSMNP, while 

further exclusion of fire will only increase the current successional trend to shade-tolerant and 

fire- intolerant species.  Prescribed burns conducted in April of 2007 used Cooper Road Trail as 

a fire break.  Subsequent regeneration of both yellow pine and oak were noted after the burn 

(Rob Klein, personal communication).  Similar regeneration was recorded in permanent plots 

established on Polecat Ridge in western GSMNP after fires in 1976 and 1977 (Harrod et al. 

1999; 2000), and was also noted in another study conducted by Swift et al. (1993).  

 To rehabilitate these ecosystems, burns should be conducted approximately every 3 to 6 

years.  Seedbed habitat would return to conditions that favor oak and pine regeneration, while 

frequent burns might also help increase resistance to pests and pathogens (Knebel and 

Wentworth 2007).  The greatest concern for fire management personnel is the large amount of 

ladder fuels created by recent southern pine beetle infestations between 1999 and 2007, which 

destroyed over 400,000 ha of yellow pine in southeastern forests (USFS 2008).  The U.S. Forest 

Service estimates that over 23 million ha of southeastern forests are at risk of southern pine 

beetle infestation (USFS 2008).  Coupled with changes in fire frequency, this departure from 

reference conditions presents an enormous wildland fire hazard.   

 Current efforts are underway in GSMNP to rehabilitate ecosystems using fire (NPCA 

2008).  This study provides fire managers with useful information about fire regimes during both 

the pre-settlement and post-settlement periods, as well as possible explanations about the effects 

of land-use on fire regimes. The new information from this study suggests the possibility of 

increasing the frequency of prescribed burns, and further suggests categorizing forests based on 

land-use history together with disturbance intensity.  Although this study does not focus on the 
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entire western portion of GSMNP, information can be applied to include other similar sites that 

require prescribed burns to rehabilitate historic conditions.  Furthermore, this study also 

differentiates fire regimes between periods of settlement.  Although fires were less frequent prior 

to the arrival of Euro-Americans, the data can be used as a general measure of how often forests 

were burning without pressures from modern settlement, or more importantly, how often 

naturally ignited fires were occurring.   

 Alternatively, this study suggests that oak-pine forests have already shifted to fire-

intolerant species, providing limited opportunity to rehabilitate the historic ecosystem.  The 

apparent lack of newly established and mature yellow pine and oak suggests that regeneration of 

favored species may be impossible.  New measures should be taken to re-classify forests that 

may have been historically dominated by these species, but now consist of shade-tolerant, fire-

intolerant species.  More resources should be focused on maintaining communities that are still 

dominated by oaks and mature yellow pines.  This approach would help restore historic trends of 

regeneration, and increase the probability of yellow pine establishment.  
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CHAPTER 7 

CONCLUSIONS AND FUTURE RESEARCH 

 The purpose of this study was to examine possible differences in fire regimes and 

vegetation composition at two sites along the Cooper Road Trail in GSMNP.  Few studies exist 

that investigate fire regimes in the southern Appalachian Mountains.  I directly identified 

differences in fire regimes, based mostly on topographic boundaries.  I also found differences in 

fire regimes between periods of settlement, which have been documented by other researchers in 

other locations of the southeastern U.S.  Furthermore, decades of fire suppression have changed 

the successional pattern of forests historically dominated by yellow pines and oaks.  Currently, 

these forests are no longer supporting establishment of the vegetation that existed prior to Euro-

American settlement, but instead are succeeding to shade-tolerant and fire-intolerant species such 

as eastern white pine and red maple.  I close this thesis with several major conclusions derived 

from my original research questions and provide future recommendations and avenues for 

research in fire history in the southern Appalachian Mountains. 

 

7.1  Major Conclusions 

1.  Tree-ring samples collected along the Cooper Road Trail provided crucial information 

about fire regimes in GSMNP. 

Tree-ring samples collected from fire-scarred yellow pines along the Cooper Road Trail 

in GSMNP provided a history of fire for approximately 300 years.  I accomplished this using the 

technique of crossdating, which ensured resolute placement of calendar years with the associated 

tree rings.  Variable ring widths and high interseries correlations allowed me to precisely date 
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fire scars in both living and dead yellow pines.  Most scars were easily identified and properly 

dated.  However, I was unable to crossdate some samples due to ring distortion or extensive 

decay.  The yellow pine forests of GSMNP provide further potential for analyzing fire history 

from tree rings, as well as the associated climatic factors.  Samples obtained for age structure 

also provided information about stand dynamics and differences in establishment between the 

two sites.  

   

2.  Fires burned more frequently in my study sites than previously reported for the 

westernmost portion of GSMNP. 

 All descriptive statistics calculated from the fire chronologies were lower than previously 

reported by Harmon (1982).  The mean and median fire intervals from both sites ranged from 3 

to 6 years, while the Weibull median and modal intervals ranged from 1 to 6 years.  Prior to the 

creation of GSMNP, fires near Cades Cove were burning at least this often.  The upper 

exceedance intervals and maximum hazard intervals further provided information about the 

future potential for wildfire in western GSMNP.  A significantly long fire-free period ranges 

from 6 to 10 years, depending on the severity of fire disturbance.  The maximum hazard intervals 

also suggested that less disturbed sites are at less risk, while more disturbed sites are at greater 

risk when fire return intervals exceed 5 years, approximately.  

 The frequent fires I found throughout the period of reliability indicate a fire regime 

dominated by low-severity fires.  These fires consumed most fuels, limiting the possibility for 

higher severity fires.  However, widespread fires were possible.  Two fires were recorded in trees 

at both sites in 1902 and in 1916, showing that fires could spread over considerably greater 

distances, despite the presence of topographic barriers between the two sites.  Therefore, the 
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historic fire regime in this area of GSMNP included low and possibly moderate severity fires that 

were not stand replacing. 

 

3.  Fire regimes at the two sites were significantly different. 

 The fire regimes at the two study sites were different, likely caused by distinct 

topography and possible differences in land use.  CRX, which was closer in proximity to Cades 

Cove, generally appeared less disturbed.  This site showed less frequent fires, older trees, and 

greater tree species diversity.  CRT proved to be more disturbed: it had experienced more 

frequent fires, had younger trees, and possibly had a greater intensity of land use.  This was most 

likely caused by selective logging and grazing from adjacent homesteads, or logging efforts from 

the Morgan Butler Timber Company.  Because I found only five fires that were synchronous 

between the two sites, I infer that topographic barriers are the primary reason that can lead to 

distinct fire regimes in GSMNP. 

 

4.  In the historic fire regime of western GSMNP, most fires occurred in the dormant period 

and in the early portions of the growing season. 

Historically, most fires near Cades Cove burned during the dormant and early seasons.  I 

found little variation in fire seasonality, with few fires in the middle or late seasons.  Fires during 

the growing season were rare due to increased understory plant cover and relative humidity.  

These fires were most likely caused by lightning strikes associated with summer thunderstorms.  

However, conditions in the fall and winter were more conducive to surface fires because leaf 

litter is more readily flammable than living understory vegetation. 
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5.  Fire regimes showed significant differences in frequency between the pre-settlement and 

post-settlement periods. 

 A definitive history of Euro-American settlement provided ample opportunity to 

differentiate fire frequency in the context of human intervention.  Fire regimes at my two study 

sites proved significantly different between the pre-settlement and post-settlement periods.  

Temporal analysis showed that the mean fire interval was approximately 5 years before Euro-

American settlement and approximately 2.5 years after settlement.  The pre-settlement period is 

assumed to represent more “natural” conditions of the fire regime due to less anthropogenic 

influence, although Native American burning remains a possibility.  Anthropogenic burning 

practices, however, are considered part of the historic fire regime, and these practices were 

generally unmodified by early settlers until the 20th century.  The change in fire frequencies 

between the pre-settlement and post-settlement periods suggests that settlement affected the 

frequency of fire. 

 

6.  Superposed epoch analysis yielded important evidence that climate may have influenced 

fire regimes differently between the pre-settlement and post-settlement periods, likely 

indicating a shift in the disturbance regime. 

In the pre-settlement period, superposed epoch analysis showed that drought was 

significantly prevalent three years before fires and likely preconditioned forests leading up to the 

fire year.  In contrast, drought during the post-settlement period was prevalent one year before a 

fire year.  Several reasons can be offered for the disparity in climate influence between the two 

periods.  It is probable that this discrepancy was caused by post-settlement augmentation of the 

disturbance regime, most likely from the introduction of livestock grazing or anthropogenic 
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ignition of yearly fires.  In addition, superposed epoch analysis also evaluated conditions after 

fires to describe prolonged periods of climate that may influence fire activity.  Climate remained 

average after fire events in both periods, showing no indication that anthropogenic burning 

altered forest conditions after fire disturbance. 

 

7.  Vegetation composition and age structure were different between sites of different land-use 

histories. 

 Vegetation composition and age structure varied considerably between my study sites.  

CRX consisted of older trees with greater basal area and greater tree species diversity.  This site 

probably experienced some human-related impacts, but to a lesser extent than CRT.  CRT 

generally had younger trees, with less diversity, but greater stand density.  These conditions 

indicate a disturbed environment.  The dominance of Virginia pine at this site further indicates a 

greater intensity of anthropogenic disturbance, suggesting that CRT may have been partially 

cleared to produce conditions more favorable to livestock, thus explaining the greater abundance 

of Virginia (or “old-field”) pine. 

  

8.  The current status of fire regimes in western GSMNP shows significant departure from the 

historical range of variation found in this study.   

 An examination of several components of the fire regimes near Cades Cove shows that 

current conditions are very different from those before the creation of GSMNP.  I found fire 

intervals ranging from 3 to 6 years throughout the entire period of reliability (1740–1934).  

Although there were some differences between the periods of settlement, 3 to 6 years should be 

used as a general measure for the historic fire frequency in mixed oak-pine forests.  Now, after 
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many years of fire suppression, the fire regimes near Cades Cove show significant departure 

from natural conditions.  Fires have become less common after Park establishment.   Excluding 

fire from this natural fire-prone ecosystem caused changes in fire frequency, fine fuels, and 

vegetation composition.  Under current conditions, these forests will likely experience more 

severe but less frequent wildfires, unless the natural fire regime is somehow partially re-

introduced. 

 

9.  Mixed oak-pine forests in GSMNP are succeeding to shade-tolerant and fire-intolerant 

species, and are failing to regenerate under current conditions.  

Mixed oak-pine communities are succeeding to a canopy dominated by shade-tolerant, 

fire-sensitive species such as eastern white pine and red maple.  Furthermore, no yellow pine and 

few oaks were observed in the seedling/sapling surveys.  This provides further evidence that 

these species are in decline.  The future canopy of mixed oak-pine forests in western GSMNP 

will be dominated by eastern white pine and red maple.  Without fire disturbance, yellow pine 

communities will cease to regenerate, as will oak species that prefer a fire-maintained habitat.  

To rehabilitate the appropriate establishment trends of oak-pine forests, I recommend that fires 

should be prescribed at a minimum of once every 6 years, with a range of fire-free years from 3 

to 9 years.   

 

7.2  Future Research  

 Future research that could potentially build upon this study could include analyses of 

macroscopic soil charcoal, seedling/sapling response to surface fires, and the effects of high-

severity crown fires on succession in mixed oak-pine forests.  Studies that use macroscopic soil 
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charcoal will likely reveal the long-term paleoecological trends of fire and species composition 

in these forests.  Together, both tree-ring and soil charcoal data provide a more comprehensive 

definition of the historic range of variation in GSMNP.  Furthermore, the higher elevations of 

GSMNP contain large areas of old-growth spruce and fir that remain untouched from logging 

efforts of the early 20
th

 century.  Fire histories developed in these areas may also help 

differentiate fire frequency between lower elevation sites from higher elevation sites, which most 

likely experience mixed to high-severity fires.   

Few studies exist that investigate interactions between fire and climate in the eastern 

United States.  Oceanic teleconnections may be a primary influence on fire regimes of the 

southern Appalachian Mountains.  It is possible that oscillations in sea surface temperature, such 

as the Atlantic Multidecadal Oscillation (AMO) and the North Atlantic Oscillation (NAO), play 

a key role in the fluctuation of fire regimes in GSMNP (Cook et al. 1998, Gray et al. 2004).  It is 

possible to model the influence of AMO and NAO on fire regimes using tree-ring analysis.  This 

may provide useful information about the multidecadal variation of climate and the subsequent 

influence on wildfires in GSMNP.  Another topic that must be addressed is the augmentation of 

fire regimes in the context of climate change.  Little is known of the changes expected in fire 

regimes in GSMNP in response to global warming.     

Many living fire-scarred yellow pines can still be found in portions of western GSMNP.   

Greater sample depth would vastly improve this study.  With more time and resources, I expect 

that the fire history of the Cades Cove area could be extended back to the 1600s, providing 

additional insights of conditions in the pre-settlement period.  Greater sample depth would also 

increase the capability of superposed epoch analysis when investigating fire-climate relationships 
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in GSMNP.  It is possible to describe longer-term (> 10 years) ecological trends using SEA, 

although my study only addressed a 10-year window superposed with the fire event. 

Most importantly, the knowledge and attitudes regarding fire must be congruent among 

government agencies and the general public.  The only way to truly understand the complex 

interactions between fire, humans, and the environment is through awareness and education of 

the natural influence of fire in the southern Appalachian Mountains.  Within the last two 

decades, research has shown the significance of fire in southern Appalachian ecosystems and the 

subsequent response and increased risk of high severity fire when fire is excluded from these 

forests.  This information reveals the urgent need for rehabilitation of mixed oak-pine forests 

through the reintroduction of historic fire frequencies.  However, continuous development of the 

wildland-urban interface further restricts the potential for rehabilitation.  Therefore, more 

restrictions should be applied to residential development in the wildland-urban interface.  

Development in fire-prone areas only increases the probability of property damage, limits the 

extent to which fires can be prescribed, and causes further departure from the historic fire 

regime, resulting in further decline of preferred, fire-adapted species.  Overall, my research 

contributes to a growing body of knowledge that describes the vital need for public education in 

fire ecology.  It is imperative that the results of studies in fire ecology are made known among 

government agencies and the general public.  This may be the only way to truly achieve the 

desired ecological conditions in the southern Appalachian Mountains. 
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APPENDIX A1.  Scientific species name, common species name, and ITRDB species code. 

Scientific Name Common Name ITRDB* Species Code 

Acer rubrum L.     

Sassafras albinum (Nutt.) Nees 

red maple  

sassafras 

ACRU 

SAAL 

Carya glabra (Mill.) Sweet pignut hickory CAGL 

Castanea dentata (Marsh.) Borkh. American chestnut  CADE 

Ilex opaca Ait. American holly ILOP 

Magnolia fraseri Walt. mountain magnolia MAFR 

Nyssa sylvatica Marsh. black gum NSSY 

Oxydendrum arboreum (L.) DC sourwood OXAR 

Pinus echinata Mill. shortleaf pine PIEC 

Pinus pungens Lamb. Table Mountain pine PIPU 

Pinus rigida Mill. pitch pine PIRI 

Pinus strobus L.   eastern white pine PIST 

Pinus virginiana Mill. Virginia pine PIVI 

Quercus alba L. white oak QUAL 

Quercus coccinea Muenchh. scarlet oak QUCO 

Quercus montana L. chestnut oak QUMO 

Quercus rubra L.     red oak QURU 

Quercus velutina Lam. black oak QUVE 

Tsuga canadensis (L.) Carr. eastern hemlock TSCA 

* International Tree-Ring Data Bank
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APPENDIX A2.  Survey information for study plot CRXA. 

Sub-Plot Sample # Species Code DBH (cm) BA (m
2
) 

1 1 PIST 10.5 0.0087 

1 2 QUCO 32.0 0.0804 

1 3 PIST 23.1 0.0419 

1 4 PIST 7.7 0.0047 

1 5 PIST 19.0 0.0284 

1 6 NYSY 22.5 0.0398 

1 7 PIST 16.5 0.0214 

1 8 PIVI 26.5 0.0552 

1 9 PIVI 25.3 0.0503 

1 10 NYSY 10.2 0.0082 

1 11 PIST 15.8 0.0196 

1 12 PIST 11.0 0.0095 

1 13 PIST 8.8 0.0061 

1 14 PIST 5.8 0.0026 

1 15 PIST 7.2 0.0041 

1 16 PIST 12.7 0.0127 

1 17 QUVE 6.6 0.0034 

1 18 NYSY 10.3 0.0083 

1 19 PIVI 26.1 0.0535 

1 20 PIST 9.5 0.0071 

1 21 PIVI 23.3 0.0426 

1 22 ACRU 6.6 0.0034 

1 23 PIST 15.0 0.0177 

1 24 OXAR 13.4 0.0141 

1 25 PIST 24.7 0.0479 

1 26 PIST 19.5 0.0299 

1 27 SAAL 10.5 0.0087 

1 28 PIST 7.7 0.0047 

1 29 PIST 8.6 0.0058 

1 30 PIST 5.7 0.0026 

1 31 PIST 21.7 0.0370 

1 32 PIVI 34.9 0.0957 

1 33 PIST 7.2 0.0041 

1 34 PIST 5.9 0.0027 

1 35 SAAL 11.2 0.0099 

1 36 ILOP 13.4 0.0141 
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APPENDIX A2.  Continued 

1 37 ILOP 7.6 0.0045 

1 38 OXAR 14.1 0.0156 

1 39 PIST 21.7 0.0370 

1 40 PIST 6.9 0.0037 

1 41 ILOP 6.0 0.0028 

1 42 NYSY 6.3 0.0031 

1 43 PIVI 20.2 0.0320 

2 44 CADE 6.1 0.0029 

2 45 SAAL 14.6 0.0167 

2 46 PIST 14.6 0.0167 

2 47 PIST 23.8 0.0445 

2 48 NYSY 6.2 0.0030 

2 49 PIST 12.2 0.0117 

2 50 PIST 10.5 0.0087 

2 51 SAAL 10 0.0079 

2 52 PIST 17.7 0.0246 

2 53 QUCO 39.8 0.1244 

2 54 NYSY 9.4 0.0069 

2 55 PIST 12.6 0.0125 

2 56 ILOP 5.7 0.0026 

2 57 OXAR 18.7 0.0275 

2 58 PIST 8.1 0.0052 

2 59 PIST 16.1 0.0204 

2 60 PIEC 43.8 0.1507 

2 61 PIVI 22.5 0.0398 

2 62 NYSY 6.3 0.0031 

3 63 PIST 16 0.0201 

3 64 PIST 22.2 0.0387 

3 65 ILOP 8.8 0.0061 

3 66 PIST 14.7 0.0170 

3 67 NYSY 12 0.0113 

3 68 PIST 14.9 0.0174 

3 69 NYSY 16.4 0.0211 

3 70 ILOP 12.2 0.0117 

3 71 ACRU 11.5 0.0104 

3 72 PIST 9.8 0.0075 

3 73 NYSY 29.7 0.0693 

3 74 NYSY 11.1 0.0097 
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APPENDIX A2.  Continued    

3 75 PIST 7.9 0.0049 

3 76 PIVI 23.8 0.0445 

3 79 PIST 8.5 0.0057 

3 80 QUMO 18.6 0.0272 

3 81 PIST 8.8 0.0061 

3 82 PIEC 53.9 0.2282 

3 83 NYSY 12.5 0.0123 

3 84 NYSY 9.8 0.0075 

3 85 ILOP 6.3 0.0031 

3 86 QURU 59 0.2734 

3 87 ACRU 17.5 0.0241 

3 88 PIST 27.2 0.0581 

3 89 PIST 15.9 0.0199 

3 90 QUCO 31.8 0.0794 

3 91 ACRU 8.8 0.0061 

4 92 PIST 16.7 0.0219 

4 93 PIST 12.6 0.0125 

4 94 PIST 19.2 0.0290 

4 95 NYSY 7.7 0.0047 

4 96 QUMO 24.6 0.0475 

4 97 ACRU 6.9 0.0037 

4 98 PIRI 45.2 0.1605 

4 99 PIRI 23.7 0.0441 

4 100 ILOP 5.4 0.0023 

4 101 NYSY 6.8 0.0036 

4 102 PIRI 33.8 0.0897 

4 103 NYSY 10 0.0079 

4 104 ILOP 11.3 0.0100 

4 105 ILOP 7 0.0038 

4 106 PIVI 23 0.0415 

4 107 PIRI 45.3 0.1612 

4 108 MAFR 5.7 0.0026 

4 109 PIST 12.6 0.0125 

4 110 PIST 49.4 0.1917 

4 111 NYSY 12.8 0.0129 

4 112 QUCO 41.2 0.1333 

4 113 ILOP 11.7 0.0108 

4 114 NYSY 12 0.0113 
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5 115 PIST 18.7 0.0275 

5 116 PIST 25.3 0.0503 

5 117 PIST 14.5 0.0165 

5 118 PIST 21 0.0346 

5 119 PIST 9.7 0.0074 

5 120 PIST 14.5 0.0165 

5 121 PIST 34.6 0.0940 

5 122 PIST 22.6 0.0401 

5 123 PIST 12.6 0.0125 

5 124 PIST 24.6 0.0475 

5 125 PIRI 43.1 0.1459 

5 126 PIST 17.7 0.0246 

5 127 PIRI 38.8 0.1182 

5 128 PIRI 38.3 0.1152 

5 129 PIRI 14 0.0154 

5 130 PIRI 31.4 0.0774 

5 131 PIRI 40.9 0.1314 

5 132 PIRI 19.4 0.0296 
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APPENDIX A3.  Survey information and age structure information from CRXB. 

Plot Sample # Species Code 

DBH 

(cm) 

BA 

(m
2
) 

Outer 

year   

(A) 

Inner 

year 

(A) 

Outer 

year 

(B) 

Inner 

year 

(B) Age 

1 133 PIST 32.8 0.0845 2008 N/A 2008 N/A N/A 

1 134 PIST 9.0 0.0064 2008 N/A 2008 N/A N/A 

1 135 PIST 13.1 0.0135 2008 1950 2008 1950 58 

1 136 PIRI 39.2 0.1207 2008 1897 2008 1897 111 

1 137 PIST 38.6 0.1170 2008 1929 2008 N/A 79 

1 138 PIST 32.3 0.0819 2008 1921 2008 1921 87 

1 139 PIST 11.1 0.0097 2008 N/A 2008 N/A N/A 

1 140 ACRU 7.0 0.0038 2008 1981 2008 1981 27 

1 141 PIST 11.8 0.0109 2008 1962 2008 1962 46 

1 142 PIST 22.4 0.0394 2008 N/A 2008 N/A N/A 

1 143 PIST 20.0 0.0314 2008 1945 2008 1945 63 

1 144 PIST 8.0 0.0050 2008 1943 2008 1943 65 

1 145 ACRU 6.7 0.0035 2008 1974 2008 1974 34 

1 146 PIST 41.9 0.1379 2008 1909 2008 N/A 99 

1 147 OXAR 21.2 0.0353 2008 1916 2008 1916 92 

1 148 PIST 17.9 0.0252 2008 1922 2008 1922 86 

1 149 PIST 10.7 0.0090 2008 1968 2008 1968 40 

1 150 PIST 9.2 0.0066 2008 1949 2008 1949 59 

1 151 PIST 9.5 0.0071 2008 1963 2008 1963 45 

1 152 PIST 20.0 0.0314 2008 1918 2008 N/A 90 

1 153 ACRU 6.8 0.0036 2008 N/A 2008 N/A N/A 

1 154 PIST 51.6 0.2091 2008 1929 2008 N/A 79 

1 155 ACRU 22.6 0.0401 2008 1936 2008 N/A 72 

1 156 QUAL 21.0 0.0346 2008 1914 2008 N/A 94 

1 157 PIVI 16.2 0.0206 2008 1922 2008 1922 86 

1 158 ACRU 6.0 0.0028 2008 1967 2008 1967 41 

1 159 NYSY 7.9 0.0049 2008 1917 2008 1917 91 

1 160 OXAR 9.8 0.0075 2008 1936 2008 1936 72 

1 161 PIST 29.5 0.0683 2008 1940 2008 1940 68 

2 162 PIST 10.8 0.0092 2008 1955 2008 1955 53 

2 163 ACRU 9.2 0.0066 2008 1958 2008 1958 50 

2 164 SAAL 11.7 0.0108 2008 N/A 2008 N/A N/A 

2 165 ACRU 27.3 0.0585 2008 1972 2008 N/A 36 

2 166 OXAR 19.1 0.0287 2008 1913 2008 1913 95 

2 167 PIRI 44.3 0.1541 2008 1870 2008 N/A 138 

2 168 PIST 14.5 0.0165 2008 1945 2008 1945 63 
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   2 169 PIST 23.0 0.0415 2008 N/A 2008 N/A N/A 

2 170 OXAR 11.9 0.0111 2008 1934 2008 1934 74 

2 171 PIST 34.4 0.0929 2008 1930 2008 N/A 78 

2 172 ACRU 12.1 0.0115 2008 N/A 2008 N/A N/A 

2 173 ACRU 7.0 0.0038 2008 1966 2008 1966 42 

2 174 PIST 41.5 0.1353 2008 1918 2008 N/A 90 

2 175 ACRU 8.6 0.0058 2008 1963 2008 1963 45 

2 176 PIST 19.8 0.0308 2008 N/A 2008 N/A N/A 

2 177 PIST 11.7 0.0108 2008 1954 2008 1954 54 

2 178 TSCA 19.2 0.0290 2008 1960 2008 N/A 48 

2 179 PIST 40.5 0.1288 2008 1936 2008 N/A 72 

2 180 PIST 14.2 0.0158 2008 1938 2008 1938 70 

2 181 ACRU 8.3 0.0054 2008 1962 2008 1962 46 

2 182 PIST 18.6 0.0272 2008 1934 2008 N/A 74 

3 183 TSCA 10.8 0.0092 2008 1977 2008 1977 31 

3 184 PIST 32 0.0804 2008 1939 2008 N/A 69 

3 185 PIST 36.8 0.1064 2008 1933 2008 N/A 75 

3 186 PIST 44.3 0.1541 2008 1953 2008 N/A 55 

3 187 TSCA 5.8 0.0026 2008 1983 2008 1983 25 

3 188 PIST 37.6 0.1110 2008 1938 2008 N/A 70 

3 189 NYSY 20.6 0.0333 2008 N/A 2008 N/A N/A 

3 190 PIST 23.5 0.0434 2008 1952 2008 N/A 56 

3 191 MAFR 5.6 0.0025 2008 1980 2008 1980 28 

3 192 PIST 12 0.0113 2008 1946 2008 1946 62 

3 193 SAAL 6.5 0.0033 2008 1970 2008 1970 38 

3 194 ACRU 13.6 0.0145 2008 1938 2008 1938 70 

3 195 PIST 17.7 0.0246 2008 N/A 2008 N/A N/A 

3 196 PIST 32.1 0.0809 2008 N/A 2008 N/A N/A 

3 197 PIVI 23.5 0.0434 2008 1890 2008 N/A 118 

3 198 ACRU 6 0.0028 2008 1967 2008 1967 41 

3 199 ACRU 8 0.0050 2008 1965 2008 1965 43 

3 200 PIST 10.2 0.0082 2008 1977 2008 1977 31 

3 201 TSCA 25.7 0.0519 2008 1956 2008 1956 52 

3 202 QUCO 24.5 0.0471 2008 1930 2008 N/A 78 

3 203 ILOP 10.5 0.0087 2008 1963 2008 1963 45 

3 204 PIST 21 0.0346 2008 1930 2008 N/A 78 

3 205 PIRI 21.5 0.0363 2008 1891 2008 1891 117 

3 206 PIST 27.2 0.0581 2008 1927 2008 N/A 81 



www.manaraa.com

117 

 

APPENDIX A3. Continued          

3 207 PIST 29.3 0.0674 2008 1910 2008 1910 98 

3 208 ILOP 6.6 0.0034 2008 1973 2008 1973 35 

3 209 PIST 9.1 0.0065 2008 1940 2008 1940 68 

3 210 PIVI 38 0.1134 2008 1878 2008 N/A 130 

4 211 PIST 16.3 0.0209 2008 N/A 2008 N/A N/A 

4 212 PIST 33.5 0.0881 2008 1921 2008 N/A 87 

4 213 PIRI 38.5 0.1164 2008 1880 2008 N/A 128 

4 214 PIST 30 0.0707 2008 N/A 2008 N/A N/A 

4 215 NYSY 6.6 0.0034 2008 1931 2008 1931 77 

4 216 QUMO 27.3 0.0585 2008 1930 2008 N/A 78 

4 217 PIST 42.2 0.1399 2008 1917 2008 N/A 91 

4 218 NYSY 14.7 0.0170 2008 1903 2008 1903 105 

4 219 ACRU 7.7 0.0047 2008 1975 2008 1975 33 

4 220 PIST 7.7 0.0047 2008 1942 2008 1942 66 

4 221 ACRU 10.8 0.0092 2008 1960 2008 N/A 48 

4 222 OXAR 18.2 0.0260 2008 N/A 2008 N/A N/A 

4 223 PIST 27.8 0.0607 2008 N/A 2008 N/A N/A 

4 224 ACRU 27 0.0573 2008 1936 2008 N/A 72 

4 225 ILOP 5.5 0.0024 2008 1960 2008 1960 48 

4 226 PIST 6 0.0028 2008 N/A 2008 N/A N/A 

5 227 PIST 26.6 0.0556 2008 N/A 2008 N/A N/A 

5 228 ILOP 7.3 0.0042 2008 1966 2008 1966 42 

5 229 SAAL 6 0.0028 2008 1961 2008 1961 47 

5 230 QUMO 35.1 0.0968 2008 1927 2008 N/A 81 

5 231 PIST 33 0.0855 2008 N/A 2008 N/A N/A 

5 232 NYSY 10 0.0079 2008 1940 2008 1940 68 

5 233 PIST 16.5 0.0214 2008 1937 2008 1937 71 

5 234 QUAL 36.8 0.1064 2008 1813 2008 N/A 195 

5 235 ACRU 33.4 0.0876 2008 1904 2008 N/A 104 

5 236 PIST 11.5 0.0104 2008 1935 2008 1935 73 

5 237 PIST 35.2 0.0973 2008 1932 2008 N/A 76 

5 238 PIST 12.8 0.0129 2008 1937 2008 1937 71 

5 239 ACRU 21.7 0.0370 2008 1901 2008 N/A 107 

5 240 PIST 19.2 0.0290 2008 1940 2008 N/A 68 

5 241 PIST 34.3 0.0924 2008 1929 2008 N/A 79 

  5   242    PIST    21.7  0.0370 2008  1918 2008   1918     90 

N/A = increment core not available due to extensive rot 
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APPENDIX A4.  Survey information from study plot CRTA. 

Plot Sample # Species Code DBH (cm) BA (m
2
) 

1 1 ACRU 17.5 0.0241 

1 2 PIST 35.5 0.0990 

1 3 PIRI 29.5 0.0683 

1 4 PIST 34.0 0.0908 

1 5 CATO 11.0 0.0095 

1 6 ACRU 6.0 0.0028 

1 7 ACRU 10.5 0.0087 

1 8 PIRI 34.5 0.0935 

1 9 ACRU 7.7 0.0047 

1 10 ACRU 10.0 0.0079 

1 11 QUCO 16.5 0.0214 

1 12 ACRU 7.0 0.0038 

1 13 ACRU 5.6 0.0025 

1 14 ACRU 9.6 0.0072 

1 15 PIST 6.0 0.0028 

1 16 ACRU 6.7 0.0035 

1 17 ACRU 7.1 0.0040 

1 18 ACRU 10.8 0.0092 

1 19 ACRU 13.0 0.0133 

1 20 ACRU 8.5 0.0057 

1 21 ACRU 10.0 0.0079 

1 22 TSCA 6.8 0.0036 

1 23 ACRU 17.0 0.0227 

1 24 PIRI 25.8 0.0523 

1 25 PIST 6.5 0.0033 

1 26 ACRU 22.7 0.0405 

1 27 ACRU 18.5 0.0269 

1 28 PIST 7.7 0.0047 

1 29 QUCO 26.6 0.0556 

1 30 ACRU 10.9 0.0093 

1 31 PIST 9.9 0.0077 

1 32 PIST 22.2 0.0387 

1 33 PIST 13.9 0.0152 

2 34 PIVI 24.9 0.0487 

2 35 PIVI 24.8 0.0483 

2 36 PIVI 29.5 0.0683 
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2 37 ACRU 12.1 0.0115 

2 38 PIST 7.6 0.0045 

2 39 TSCA 6.3 0.0031 

2 40 ACRU 7.0 0.0038 

2 41 ACRU 13.0 0.0133 

2 42 OXAR 11.2 0.0099 

2 43 QUCO 33.9 0.0903 

2 44 ACRU 6.8 0.0036 

2 45 PIVI 38.5 0.1164 

2 46 ACRU 9.8 0.0075 

2 47 QUCO 26.4 0.0547 

2 48 PIST 7 0.0038 

2 49 ACRU 7.8 0.0048 

2 50 ACRU 8.8 0.0061 

2 51 QUCO 39 0.1195 

2 52 QUCO 41.5 0.1353 

2 53 NYSY 9.1 0.0065 

2 54 QUCO 20.5 0.0330 

2 55 OXAR 17 0.0227 

2 56 ACRU 6.3 0.0031 

2 57 TSCA 6.4 0.0032 

2 58 PIVI 26.1 0.0535 

2 59 ACRU 9 0.0064 

2 60 ACRU 10.5 0.0087 

2 61 ACRU 7.5 0.0044 

2 62 ACRU 9.3 0.0068 

2 63 ACRU 12.5 0.0123 

2 64 PIST 16 0.0201 

3 65 PIVI 20.2 0.0320 

3 66 ACRU 8.6 0.0058 

3 67 ACRU 10.5 0.0087 

3 68 QUMO 12 0.0113 

3 69 ACRU 7.5 0.0044 

3 70 PIST 10.4 0.0085 

3 71 ACRU 16.6 0.0216 

3 72 ACRU 8 0.0050 

3 73 PIST 50.7 0.2019 

3 74 ACRU 7.5 0.0044 
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3 75 ACRU 18.5 0.0269 

3 76 ACRU 8.4 0.0055 

3 80 QUMO 16.9 0.0224 

3 81 ACRU 6.8 0.0036 

3 82 TSCA 7.5 0.0044 

3 83 ACRU 10.7 0.0090 

3 84 QUMO 20.6 0.0333 

3 85 ACRU 17.8 0.0249 

3 86 ACRU 9.6 0.0072 

3 87 ACRU 18 0.0254 

3 88 ACRU 7.9 0.0049 

3 89 ACRU 8.5 0.0057 

3 90 ACRU 12.2 0.0117 

4 91 OXAR 16.4 0.0211 

4 92 QUCO 38 0.1134 

4 93 TSCA 9.5 0.0071 

4 94 ACRU 17.1 0.0230 

4 95 QUCO 19.9 0.0311 

4 96 ACRU 7.7 0.0047 

4 97 QUCO 23.6 0.0437 

4 98 NYSY 7.5 0.0044 

4 99 PIST 19.6 0.0302 

4 100 NYSY 7.9 0.0049 

4 101 TSCA 8.4 0.0055 

4 102 OXAR 8.9 0.0062 

4 103 QUCO 15 0.0177 

4 104 ACRU 14.2 0.0158 

4 105 ACRU 12.3 0.0119 

4 106 ACRU 13.9 0.0152 

4 107 ACRU 8.2 0.0053 

4 108 TSCA 8.3 0.0054 

4 109 PIST 8.2 0.0053 

4 110 QUCO 33 0.0855 

4 111 PIST 19.6 0.0302 

4 112 ACRU 8.7 0.0059 

4 113 ACRU 6.5 0.0033 

4 114 ACRU 22.8 0.0408 

4 115 ACRU 8.3 0.0054 
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4 116 ACRU 12 0.0113 

4 117 PIST 6.8 0.0036 

4 118 QUCO 45.5 0.1626 

4 119 ACRU 8.7 0.0059 

4 120 ACRU 9.7 0.0074 

4 121 QUCO 15.6 0.0191 

4 122 ACRU 10.9 0.0093 

4 123 ACRU 11.3 0.0100 

4 124 ACRU 13.6 0.0145 

4 125 ACRU 14.6 0.0167 

5 126 PIVI 20.4 0.0327 

5 127 PIST 51.5 0.2083 

5 128 ACRU 8.1 0.0052 

5 129 OXAR 16.3 0.0209 

5 130 QUCO 23.1 0.0419 

5 131 TSCA 12.6 0.0125 

5 132 PIST 8 0.0050 

5 133 ACRU 14.5 0.0165 

5 134 ACRU 21.3 0.0356 

5 135 ACRU 10.1 0.0080 

5 136 PIVI 24 0.0452 

5 137 ACRU 12.4 0.0121 

5 138 QUCO 64.6 0.3278 

5 139 NYSY 12.5 0.0123 

5 140 ACRU 11.6 0.0106 

5 141 TSCA 8.5 0.0057 

5 142 ACRU 12 0.0113 

5 143 TSCA 6.5 0.0033 

5 144 PIVI 14.3 0.0161 

5 145 PIVI 17.7 0.0246 

5 146 QUMO 14.7 0.0170 

5 147 PIVI 14.5 0.0165 

5 148 PIST 9.4 0.0069 
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APPENDIX A5.  Survey information and age structure information from the study plot CRTB. 

Plot Sample # 

Species 

Code 

DBH 

(cm) 

BA 

(m
2
) 

Outer 

year 

(A) 

Inner 

year   

(A) 

Outer 

year 

(B) 

Inner 

year 

(B) Age 

1 149 PIVI 28.1 0.0620 2008 1934 2008 1934 74 

1 150 NYSY 14.6 0.0167 2008 1932 2008 1932 76 

1 151 PIVI 20.0 0.0314 2008 1932 2008 1932 76 

1 152 NYSY 6.9 0.0037 2008 1964 2008 1964 44 

1 153 PIVI 20.4 0.0327 2008 1936 2008 1936 72 

1 154 OXAR 14.2 0.0158 2008 1944 2008 1944 64 

1 155 NYSY 9.6 0.0072 2008 1953 2008 1953 55 

1 156 NYSY 12.3 0.0119 2008 1938 2008 1938 70 

1 157 QUCO 29.0 0.0661 2008 1927 2008 1927 81 

1 158 PIVI 24.0 0.0452 2008 1933 2008 1933 75 

1 159 ACRU 13.3 0.0139 2008 N/A 2008 N/A N/A 

1 160 PIVI 17.0 0.0227 2008 1937 2008 1937 71 

1 161 PIST 12.5 0.0123 2008 1942 2008 1942 66 

1 162 ACRU 11.6 0.0106 2008 1933 2008 1933 75 

1 163 PIRI 44.4 0.1548 2008 1902 2008 1902 106 

1 164 ACRU 7.0 0.0038 2008 1966 2008 1966 42 

1 165 QUCO 23.5 0.0434 2008 1935 2008 1935 73 

1 166 PIVI 17.1 0.0230 2008 1958 2008 1958 50 

1 167 ACRU 26.8 0.0564 2008 1919 2008 1919 89 

1 168 ACRU 12.9 0.0131 2008 N/A 2008 N/A N/A 

1 169 ACRU 11.9 0.0111 2008 1924 2008 1924 84 

1 170 ACRU 11.6 0.0106 2008 1933 2008 1933 75 

1 171 PIST 8.0 0.0050 2008 1953 2008 N/A 55 

2 172 ACRU 20.1 0.0317 2008 1959 2008 N/A 49 

2 173 PIST 7.7 0.0047 2008 1953 2008 1953 55 

2 174 PIST 28.2 0.0625 2008 1955 2008 1955 53 

2 175 PIST 46.1 0.1669 2008 1955 2008 N/A 53 

2 176 ACRU 13.3 0.0139 2008 1933 2008 1933 75 

2 177 ACRU 14.6 0.0167 2008 1937 2008 1937 71 

2 178 PIVI 36.2 0.1029 2008 N/A 2008 N/A N/A 

2 179 TSCA 8.2 0.0053 2008 1983 2008 1983 25 

2 180 NYSY 21.9 0.0377 2008 1918 2008 N/A 90 

2 181 PIVI 18.4 0.0266 2008 1937 2008 1937 71 

2 182 ACRU 10.4 0.0085 2008 N/A 2008 N/A N/A 

2 183 PIVI 17.0 0.0227 2008 1947 2008 1947 61 

2 184 PIVI 39.4 0.1219 2008 1947 2008 1947 61 
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2 185 NYSY 10.6 0.0088 2008 1940 2008 1940 68 

2 186 PIST 9.0 0.0064 2008 1975 2008 1975 33 

2 187 PIVI 25.1 0.0495 2008 1933 2008 1933 75 

2 188 PIVI 20.7 0.0337 2008 1942 2008 1942 66 

2 189 TSCA 7.2 0.0041 2008 1983 2008 1983 25 

2 190 NYSY 18.8 0.0278 2008 1929 2008 1929 79 

2 191 PIVI 21.2 0.0353 2008 1941 2008 1941 67 

2 192 PIVI 22.2 0.0387 2008 N/A 2008 N/A N/A 

2 193 PIVI 25.5 0.0511 2008 1943 2008 1943 65 

2 194 PIST 7.2 0.0041 2008 1983 2008 1983 25 

2 195 PIST 7.2 0.0041 2008 1984 2008 1984 24 

2 196 PIST 8.3 0.0054 2008 1984 2008 1984 24 

3 197 PIVI 18.5 0.0269 2008 1948 2008 1948 60 

3 198 PIST 6.1 0.0029 2008 1980 2008 1980 28 

3 199 NYSY 11.2 0.0099 2008 1931 2008 1931 77 

3 200 OXAR 18.3 0.0263 2008 1950 2008 1950 58 

3 201 TSCA 7.4 0.0043 2008 1981 2008 1981 27 

3 202 OXAR 11.6 0.0106 2008 1945 2008 1945 63 

3 203 PIVI 20.3 0.0324 2008 1937 2008 1937 71 

3 204 QUCO 26.4 0.0547 2008 N/A 2008 N/A N/A 

3 205 NYSY 12.2 0.0117 2008 1931 2008 1931 77 

3 206 PIST 19.1 0.0287 2008 1957 2008 N/A 51 

3 207 ACRU 13.1 0.0135 2008 1940 2008 1940 68 

3 208 PIVI 18.5 0.0269 2008 1940 2008 1940 68 

3 209 NYSY 13 0.0133 2008 1933 2008 N/A 75 

3 210 PIVI 27.5 0.0594 2008 1949 2008 1949 59 

3 211 PIVI 13.7 0.0147 2008 1935 2008 1935 73 

3 212 NYSY 16 0.0201 2008 1946 2008 1946 62 

3 213 PIVI 27 0.0573 2008 1944 2008 1944 64 

3 214 PIVI 14.5 0.0165 2008 1948 2008 1948 60 

3 215 PIVI 10.9 0.0093 2008 1943 2008 1943 65 

3 216 PIVI 17.8 0.0249 2008 1947 2008 1947 61 

3 217 NYSY 14 0.0154 2008 1927 2008 1927 81 

3 218 PIVI 18.4 0.0266 2008 1941 2008 1941 67 

3 219 NYSY 10.2 0.0082 2008 1942 2008 1942 66 

3 220 PIST 9.3 0.0068 2008 1963 2008 1963 45 

3 221 ACRU 12.5 0.0123 2008 1949 2008 1949 59 

3 222 NYSY 11.7 0.0108 2008 1924 2008 1924 84 
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3 223 PIVI 23.5 0.0434 2008 1945 2008 1945 63 

3 224 PIVI 29.7 0.0693 2008 1936 2008 N/A 72 

3 225 ACRU 12.1 0.0115 2008 N/A 2008 N/A N/A 

3 226 NYSY 6.8 0.0036 2008 1941 2008 1941 67 

3 227 PIRI 21.6 0.0366 2008 N/A 2008 N/A N/A 

3 228 QUCO 24.5 0.0471 2008 1924 2008 N/A 84 

3 229 PIVI 24 0.0452 2008 1954 2008 1954 54 

3 230 NYSY 8.1 0.0052 2008 1939 2008 1939 69 

3 231 NYSY 8.5 0.0057 2008 1947 2008 1947 61 

4 232 PIST 19.2 0.0290 2008 1949 2008 N/A 59 

4 233 QUCO 16.2 0.0206 2008 1926 2008 1926 82 

4 234 PIVI 19.8 0.0308 2008 1936 2008 1936 72 

4 235 ACRU 9.6 0.0072 2008 1939 2008 1939 69 

4 236 TSCA 10.5 0.0087 2008 1961 2008 1961 47 

4 237 PIST 9 0.0064 2008 N/A 2008 N/A N/A 

4 238 NYSY 9 0.0064 2008 1933 2008 NA 75 

4 239 PIVI 23.4 0.0430 2008 1935 2008 NA 73 

4 240 PIVI 19 0.0284 2008 1933 2008 1933 75 

4 241 PIVI 17.3 0.0235 2008 1942 2008 1942 66 

4 242 PIST 6.5 0.0033 2008 1980 2008 1980 28 

4 243 QUCO 30.1 0.0712 2008 1933 2008 N/A 75 

4 244 PIVI 24.8 0.0483 2008 1946 2008 N/A 62 

4 245 TSCA 11.6 0.0106 2008 1972 2008 1972 36 

4 246 QUCO 22.7 0.0405 2008 N/A 2008 N/A N/A 

4 247 ACRU 19.7 0.0305 2008 1922 2008 1922 86 

4 248 PIST 7.4 0.0043 2008 1980 2008 1980 28 

4 249 PIVI 17 0.0227 2008 1941 2008 N/A 67 

4 250 PIVI 18.2 0.0260 2008 1949 2008 N/A 59 

4 251 PIST 17.5 0.0241 2008 N/A 2008 N/A N/A 

4 252 PIST 7.8 0.0048 2008 1978 2008 1978 30 

4 253 QUCO 13.8 0.0150 2008 1947 2008 1947 61 

4 254 PIVI 18.9 0.0281 2008 1954 2008 1954 54 

4 255 ACRU 9.9 0.0077 2008 N/A 2008 N/A N/A 

4 256 PIST 10.2 0.0082 2008 1978 2008 N/A 30 

4 257 PIST 11.1 0.0097 2008 1964 2008 1946 62 

4 258 PIST 11.7 0.0108 2008 1953 2008 1953 55 

4 259 ACRU 20.5 0.0330 2008 1941 2008 N/A 67 

4 260 ACRU 29.9 0.0702 2008 1947 2008 N/A 61 
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4 261 PIST 8 0.0050 2008 1977 2008 1977 31 

4 262 PIST 12.6 0.0125 2008 1972 2008 1972 36 

5 265 TSCA 15.5 0.0189 2008 1956 2008 1956 52 

5 266 ACRU 13.6 0.0145 2008 1931 2008 1931 77 

5 267 ACRU 23.4 0.0430 2008 1928 2008 N/A 80 

5 268 PIST 7.8 0.0048 2008 1979 2008 1979 29 

5 269 PIST 8 0.0050 2008 1976 2008 1976 32 

5 270 PIST 19.5 0.0299 2008 N/A 2008 N/A N/A 

5 271 PIST 7.5 0.0044 2008 1974 2008 N/A 34 

5 272 ACRU 13.2 0.0137 2008 1952 2008 N/A 56 

5 273 PIST 9 0.0064 2008 1975 2008 1975 33 

5 274 OXAR 21.8 0.0373 2008 1947 2008 1947 61 

5 275 PIST 7.5 0.0044 2008 1982 2008 N/A 26 

5 276 PIVI 24.1 0.0456 2008 1948 2008 N/A 60 

5 277 NYSY 8.5 0.0057 2008 1923 2008 1923 85 

5 278 NYSY 6.5 0.0033 2008 1950 2008 N/A 58 

5 279 PIST 8.5 0.0057 2008 1982 2008 1982 26 

5 280 PIVI 29.9 0.0702 2008 1940 2008 N/A 68 

5 281 NYSY 12.6 0.0125 2008 1948 2008 N/A 60 

5 282 ACRU 15 0.0177 2008 1962 2008 1962 46 

5 283 NYSY 9.9 0.0077 2008 1937 2008 1937 71 

5 284 PIVI 22.1 0.0384 2008 N/A 2008 N/A N/A 

5 285 ACRU 24.3 0.0464 2008 1946 2008 N/A 62 

5 286 PIVI 29.6 0.0688 2008 1933 2008 1933 75 

5 287 NYSY 10.4 0.0085 2008 1933 2008 1933 75 

5 288 PIVI 17.3 0.0235 2008 1939 2008 N/A 69 

5 289 PIVI 16.1 0.0204 2008 1940 2008 1940 68 

5 290 PIST 12.5 0.0123 2008 1974 2008 1974 34 

5 291 PIVI 25.1 0.0495 2008 1936 2008 N/A 72 

5 292 PIVI 19.3 0.0293 2008 1939 2008 N/A 69 

5 293 PIVI 21 0.0346 2008 1954 2008 N/A 54 

N/A = increment core not available due to extensive rot 
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APPENDIX A6.  CRX Fire History Summary Information. 

Fire Interval Analyses, All Scarred, 1749–1934 

 

Summary Information 

 

        Total Recorder  %       Fire 

Year Scars Trees Scarred Interval 

--------------------------------------- 

1749    2       2       100        . 

1754    1       3        33        5 

1757    2       4        50        3 

1765    1       4        25        8 

1766    1       4        25        1 

1768    1       4        25        2 

1772    1       4        25        4 

1777    3       6        50        5 

1780    1       6        17        3 

1787    2       6        33        7 

1796    1       6        17        9 

1806    1       3        33       10 

1809    1       3        33        3 

1813    1       2        50        4 

1830    1       2        50       17 

1833    1       2        50        3 

1839    2       3        67        6 

1847    1       2        50        8 

1853    1       2        50        6 

1857    2       2       100       4 

1865    1       2        50        8 

1870    2       2       100       5 

1873    1       2        50        3 

1878    1       2        50        5 

1898    2       3        67       20 

1902    2       5        40        4 

1906    2       5        40        4 

1916    3       5        60       10 
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APPENDIX A6.  continued 

Summary Statistics 

 

Total Intervals                                   27 

Mean Fire Interval                           6.19 

Median Fire Interval                        5.00 

Fire Frequency                                 0.16 

Weibull Modal Interval                    3.82 

Weibull Median Interval                   5.55 

Weibull Fire Frequency                    0.18 

Standard Deviation                           4.30 

Coefficient of Variation                    0.69 

Skewness                                           1.75 

Kurtosis                                             2.90 

Scale parameter                                  6.96 

Shape parameter                                 1.61 

Minimum Fire Interval                       1.00 

Maximum Fire Interval                    20.00 

Lower Exceedance Interval                2.00 

Upper Exceedance Interval              10.96 

Maximum Hazard Interval               24.41 
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APPENDIX A7.  CRT Fire History Summary Information. 

Fire Interval Analyses, All Scarred, 1678–2008 

 

Summary Information 

          Total Recorder   %         Fire 

Year  Scars   Trees   Scarred  Interval 

--------------------------------------- 

1720    1       1       100        . 

1740    1       2        50       20 

1777    1       1       100      37 

1786    1       2        50        9 

1814    1       2        50       28 

1818    1       3        33        4 

1828    1       4        25       10 

1835    1       4        25        7 

1838    1       4        25        3 

1843    1       4        25        5 

1847    1       3        33        4 

1848    1       3        33        1 

1849    1       4        25        1 

1850    1       4        25        1 

1854    1       4        25        4 

1856    2       5        40        2 

1858    1       5        20        2 

1861    1       5        20        3 

1862    1       5        20        1 

1863    1       5        20        1 

1871    1       5        20        8 

1872    1       6        17        1 

1874    1       6        17        2 

1884    1       4        25       10 

1888    3       6        50        4 

1889    1       6        17        1 

1896    3       6        50        7 

1900    2       6        33        4 

1902    4       7        57        2 

1906    2       8        25        4 

1909    4       8        50        3 

1912    2       9        22        3 

1914    1      10       10        2 

1916    3      10       30        2 

1920    2       9        22        4 

1922    2       8        25        2 

1923    1       8        13        1 



www.manaraa.com

129 

 

APPENDIX A7. continued 

1926    1       8        13        3 

1930    1       8        13        4 

1934    2       5        40        4 

1945    1       5        20       11 

 

Summary Statistics 

 

Total Intervals                      35 

Mean Fire Interval                 3.43 

Median Fire Interval               3.00 

Fire Frequency                     0.29 

Weibull Modal Interval            1.95 

Weibull Median Interval           3.03 

Weibull Fire Frequency            0.33 

Standard Deviation                 2.43 

Coefficient of Variation           0.71 

Skewness                           1.28 

Kurtosis                           1.06 

Scale parameter                    3.84 

Shape parameter                    1.54 

Minimum Fire Interval             1.00 

Maximum Fire Interval            10.00 

Lower Exceedance Interval         1.04 

Upper Exceedance Interval         6.17 

Maximum Hazard Interval           5.74 
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APPENDIX A8.  COFECHA dating adjustments for fire-scarred samples at CRX. 

PART 8:  ADJUSTMENTS FOR UNDATED SERIES: CRX                                                       15:46  Mon 09 Nov 2009  Page   2 

------------------------------------------------------------------------------------------------------------------------------------ 

 

 Time span  1684  2006   323 years, best matches for  40-year segments lagged   5 years 

 Listed in order from highest correlation 

 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRX323A  1844 1883    27 .42  -152 .40   -42 .38     0 .36   -12 .34    74 .34   120 .34     6 .33  -119 .33    68 .31   -92 .31 

 CRX323A  1849 1888     0 .43    27 .41    64 .36    68 .35   -42 .35  -152 .35    55 .33     6 .33   -74 .33   -94 .32  -119 .30 

 CRX323A  1854 1893   -42 .44  -152 .42    68 .40    27 .39    64 .39     0 .37  -126 .35  -170 .34  -137 .34    55 .33   -74 .33 

 CRX323A  1859 1898    27 .50   -74 .47  -152 .41    68 .39   -94 .39   -42 .38     0 .37  -171 .36    64 .35    59 .35  -170 .33 

 CRX323A  1864 1903    27 .46    68 .45   -74 .44  -171 .39  -126 .38   -94 .36   -42 .36  -152 .35     0 .35    88 .34    64 .34 

 CRX323A  1869 1908    27 .45     0 .45   -74 .41  -125 .40  -100 .38    68 .37  -126 .36   -34 .35     4 .35    55 .33    69 .31 

 CRX323A  1874 1913   -51 .41     4 .40  -125 .38   -74 .38  -161 .36    55 .35    59 .34   -34 .34  -144 .32   -42 .31    88 .31 

 CRX323A  1879 1918   -61 .52    68 .52  -171 .44  -145 .43   -74 .42   -34 .42    46 .41  -125 .39     0 .37    88 .33   -71 .32 

 CRX323A  1884 1923   -61 .53  -171 .51    13 .43   -34 .39    68 .38   -98 .37  -145 .35   -71 .35   -74 .34    46 .34    23 .34 

 CRX323A  1889 1928  -171 .60   -61 .50    46 .48   -34 .40    68 .36   -26 .35   -71 .35    13 .33     0 .33  -145 .31  -183 .30 

 CRX323A  1894 1933  -171 .56     0 .45   -97 .43   -51 .41    46 .38   -26 .37   -61 .37  -125 .35  -145 .31  -153 .31    19 .31 

 CRX323A  1899 1938  -171 .54     0 .50  -153 .45   -26 .42   -51 .41   -74 .35  -145 .35    46 .31     4 .31    17 .31    13 .29 

 CRX323A  1904 1943  -171 .58     0 .51   -26 .39  -153 .37    17 .35   -51 .35   -71 .33   -74 .30    19 .30   -45 .30  -207 .30 

 CRX323A  1909 1948  -171 .54     0 .53   -26 .42    19 .37   -93 .37    58 .35   -71 .35   -51 .33    42 .32   -45 .32   -32 .32 

 CRX323A  1914 1953     0 .49  -171 .45   -87 .38    42 .36    19 .35  -114 .33   -45 .33   -13 .32   -53 .31   -71 .31   -26 .31 

 CRX323A  1919 1958   -53 .44    42 .44   -87 .43     0 .42  -171 .39   -80 .36  -189 .33   -42 .32  -223 .30    26 .28  -172 .28 

 CRX323A  1924 1963   -53 .44     0 .43   -87 .40   -80 .38    42 .36  -171 .36  -172 .34  -198 .32   -32 .31  -153 .30  -106 .30 

 CRX323A  1929 1968   -80 .48     0 .42  -117 .39  -172 .35   -53 .33  -164 .33  -190 .31   -87 .31    23 .31  -139 .31   -45 .30 

 CRX323A  1934 1973   -80 .45     0 .41  -248 .40   -87 .39   -53 .39  -164 .34  -139 .32   -71 .32   -41 .30  -168 .30  -152 .29 

 CRX323A  1939 1978   -87 .43     0 .40  -180 .37     1 .37  -168 .34  -155 .34  -248 .33    11 .32   -53 .32  -152 .29  -251 .29 

 CRX323A  1944 1983  -129 .45     0 .44  -180 .44  -155 .40  -142 .38  -251 .36   -53 .35     1 .35  -238 .33   -80 .33  -168 .32 

 CRX323A  1949 1988     0 .46  -251 .45    -1 .44  -168 .39  -239 .37     1 .36  -180 .35  -142 .35  -214 .34  -153 .33  -252 .32 

 CRX323A  1954 1993     0 .59  -213 .45  -251 .44    -1 .44  -239 .40  -214 .38  -130 .37  -168 .36  -250 .35  -142 .33   -94 .33 

 CRX323A  1959 1998     0 .71  -239 .50   -95 .48    -1 .42  -130 .37   -24 .37  -168 .36  -251 .34  -214 .34   -94 .32  -165 .31 

 CRX323A  1964 2003     0 .65  -239 .54   -95 .46    -1 .41   -94 .40  -240 .39  -213 .37  -214 .37  -181 .35  -132 .34  -122 .33 

 CRX323A  1968 2007   -94 .48  -239 .48   -95 .45  -181 .37    -1 .36  -122 .36  -240 .35  -280 .35  -214 .33  -213 .32  -114 .31 

     26 segments  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Number of segments 

       Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av 

        +0 23  .45  -171 12  .48   -74 10  .38   +68  9  .39  -152  7  .36   -94  7  .37   -71  7  .33   -53  7  .37 

       -42  7  .36   -87  6  .39  -168  6  .34   -26  6  .38   +27  6  .44   -80  5  .40  -214  5  .35  -239  5  .46 

      -145  5  .35   -51  5  .38  -153  5  .35   -34  5  .38    -1  5  .41  -251  5  .38   +46  5  .38   -45  4  .31 

       -61  4  .48   +19  4  .33   +42  4  .37  -125  4  .38   +55  4  .34   +64  4  .36    +4  3  .35   +13  3  .35 

      -172  3  .32  -126  3  .36  -142  3  .35   -95  3  .46  -180  3  .39    +1  3  .36  -213  3  .38   +88  3  .33 

 Chronological order 

       Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No 

      -251  5  -239  5  -214  5  -213  3  -180  3  -172  3  -171 12  -168  6  -153  5  -152  7  -145  5  -142  3  -126  3  -125  4 
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APPENDIX A8. continued 
 

       -95  3   -94  7   -87  6   -80  5   -74 10   -71  7   -61  4   -53  7   -51  5   -45  4   -42  7   -34  5   -26  6    -1  5 

        +0 23    +1  3    +4  3   +13  3   +19  4   +27  6   +42  4   +46  5   +55  4   +64  4   +68  9   +88  3 

 

 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRX327A  1865 1904    34 .47   -93 .47  -164 .42    49 .39     0 .38   -81 .36  -151 .35   -55 .35   -21 .34  -165 .32    86 .32 

 CRX327A  1870 1909  -164 .45  -183 .44     0 .43   -21 .41   -25 .35  -177 .34    49 .33  -165 .32   -74 .31    85 .31   -67 .30 

 CRX327A  1875 1914     0 .45  -164 .39   -21 .39  -141 .38   -67 .37  -183 .32   -74 .31  -163 .30    53 .30    49 .29  -127 .28 

 CRX327A  1880 1919     0 .50   -78 .37    49 .37   -67 .37  -173 .35   -87 .34  -101 .32    -2 .30   -21 .30  -141 .30   -74 .29 

 CRX327A  1885 1924     0 .51  -199 .42   -67 .39   -87 .38  -184 .38  -196 .34    30 .33   -78 .32  -118 .31    49 .31   -41 .30 

      5 segments  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Number of segments 

       Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av 

        +0  5  .45   +49  5  .34   -67  4  .36   -21  4  .36  -164  3  .42   -74  3  .31 

 Chronological order 

       Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No 

      -164  3   -74  3   -67  4   -21  4    +0  5   +49  5 

 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRX331A  1819 1858   -87 .40   -97 .39    39 .39  -123 .36    62 .35  -109 .35     0 .34   111 .33   -83 .31    61 .31   -61 .31 

 CRX331A  1824 1863     0 .40    61 .39   -65 .38    62 .37  -137 .35   -24 .34   -61 .33    -9 .32   130 .31   129 .30   -83 .30 

 CRX331A  1829 1868     0 .46    62 .39   -65 .38    -9 .34  -137 .33   129 .33    61 .30   -36 .30   -79 .30    29 .30   -61 .29 

 CRX331A  1834 1873   -65 .42     0 .42   -39 .33   -38 .32  -137 .32    62 .30    -9 .30   -14 .29    25 .29    92 .29    61 .27 

 CRX331A  1839 1878  -116 .49    29 .40     0 .38   -93 .36   -90 .33   -39 .31    78 .30   -38 .30   -19 .29   -36 .28    -9 .27 

 CRX331A  1844 1883  -116 .50    29 .38   -93 .37   -90 .35  -125 .32     0 .31   -38 .29   -19 .27   -36 .27   -24 .27    78 .27 

 CRX331A  1847 1886  -116 .50   -90 .38  -125 .34   -93 .34     0 .34   -36 .33    -9 .31    62 .30    29 .30    78 .29    95 .29 

      7 segments  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Number of segments 

       Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av 

        +0  7  .38    -9  5  .31   +62  5  .34   -36  4  .30   +29  4  .34   +61  4  .32   -38  3  .30   -90  3  .35 

      -116  3  .49  -137  3  .33   -65  3  .39   -61  3  .31   -93  3  .35   +78  3  .29 

 Chronological order 

       Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No 

      -137  3  -116  3   -93  3   -90  3   -65  3   -61  3   -38  3   -36  4    -9  5    +0  7   +29  4   +61  4   +62  5   +78  3 

 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRX331B  1685 1724    18 .60   267 .51    76 .50   203 .49    -1 .48   160 .45     5 .45   101 .39     0 .37    58 .32   130 .30 
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APPENDIX A8. continued 
  

 CRX331B  1690 1729    18 .59   267 .49    76 .44   160 .43    -1 .41    88 .38     0 .38     5 .38   203 .38   101 .37   199 .34  

 CRX331B  1695 1734    18 .54    76 .46   267 .43   199 .43     0 .43    88 .40     5 .39    -1 .38   203 .38   160 .37   216 .34 

 CRX331B  1700 1739   185 .45   216 .40    63 .39   -13 .36   205 .35     0 .34   118 .34   174 .33    29 .32    26 .32    44 .31 

 CRX331B  1705 1744     0 .50   185 .41    63 .40    44 .37    99 .34    26 .34    64 .33   216 .33   129 .33   174 .32   215 .31 

 CRX331B  1710 1749    44 .49     0 .45    99 .42   174 .41   136 .39   118 .37   129 .35    36 .34    63 .32   152 .32   216 .32 

 CRX331B  1715 1754    44 .44   174 .40   152 .37   129 .35     0 .34   118 .34   240 .33   136 .33   206 .32    71 .32   -25 .31 

 CRX331B  1720 1759   174 .45   152 .37   247 .37   129 .36    85 .35    44 .34     0 .33   118 .33   215 .32    98 .32    11 .32 

 CRX331B  1725 1764    11 .40    85 .39   152 .36   240 .35   174 .33    36 .33   -11 .33   133 .33   206 .31   215 .30   129 .28 

      9 segments  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Number of segments 

       Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av 

        +0  8  .39  +174  6  .37   +44  5  .39  +129  5  .34  +118  4  .34  +152  4  .36  +216  4  .35    +5  3  .40 

       +18  3  .58   +63  3  .37  +160  3  .42    -1  3  .42  +203  3  .42  +215  3  .31   +76  3  .47  +267  3  .47 

 Chronological order 

       Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No 

        -1  3    +0  8    +5  3   +18  3   +44  5   +63  3   +76  3  +118  4  +129  5  +152  4  +160  3  +174  6  +203  3  +215  3 

      +216  4  +267  3 

 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRX333B  1800 1839   -37 .49    51 .40    90 .37  -109 .35   131 .35    74 .35   -97 .32     0 .30   125 .29   -13 .28     4 .28 

 CRX333B  1805 1844   -37 .48  -109 .39    74 .35    51 .35   125 .35   142 .33    90 .32   -13 .30   -62 .29   -97 .27    -8 .26 

 CRX333B  1810 1849    22 .45   128 .39   -85 .36   151 .33   -37 .32     0 .32    13 .31    14 .31   111 .30   -62 .29    56 .29 

 CRX333B  1815 1854   128 .41   -85 .37    56 .36    14 .36    22 .35   -37 .35   120 .33   -24 .32    65 .31   151 .30  -121 .30 

 CRX333B  1820 1859  -120 .41    56 .39    37 .38     0 .37   129 .36   -84 .36   -83 .35   -37 .31   106 .30   -88 .30  -106 .30 

 CRX333B  1825 1864   129 .41   -84 .40     0 .37    38 .37  -121 .34    37 .34    56 .34  -120 .33  -139 .32   -51 .31    57 .30 

 CRX333B  1830 1869     0 .39    38 .39    29 .35  -120 .35   129 .34   128 .33   -84 .31   -43 .30    78 .30  -139 .28   120 .27 

 CRX333B  1835 1874     0 .49   -84 .40   -59 .38     7 .37  -129 .37   -83 .36   -30 .36   120 .34    38 .32   -92 .30   -10 .30 

      8 segments  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Number of segments 

       Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av 

        +0  6  .37   -37  5  .39   -84  4  .37   +56  4  .34   +38  3  .36  -120  3  .36  +120  3  .31  +128  3  .38 

      +129  3  .37 

 Chronological order 

       Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No 

      -120  3   -84  4   -37  5    +0  6   +38  3   +56  4  +120  3  +128  3  +129  3 

 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRX338A  1932 1971     0 .65   -41 .42  -162 .40   -10 .38  -108 .36  -196 .35  -220 .34  -188 .31  -168 .30   -47 .30  -205 .29 

 CRX338A  1937 1976     0 .52  -251 .44   -47 .38  -168 .36  -188 .36  -214 .35  -213 .34   -98 .31  -215 .31  -154 .30   -27 .29 
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 CRX338A  1942 1981     0 .49  -251 .49  -188 .40  -154 .37  -179 .36  -128 .34    25 .34  -213 .34  -196 .33   -95 .33   -47 .31 

 CRX338A  1947 1986     0 .48  -179 .48  -188 .46  -128 .42  -214 .41   -95 .41  -213 .38  -171 .34   -52 .32  -251 .30  -114 .29 

 CRX338A  1952 1991     0 .53  -188 .48  -214 .45    15 .41  -213 .41   -69 .36  -114 .35  -212 .34    -1 .33   -52 .32  -115 .31  

 CRX338A  1957 1996     0 .51  -213 .49  -188 .47  -214 .42  -268 .38  -114 .36   -69 .34    -1 .31     8 .30  -231 .30  -115 .28 

 CRX338A  1962 2001  -213 .54  -187 .47     0 .43  -268 .41  -114 .41  -214 .39  -233 .35    -1 .32  -115 .32   -72 .32  -188 .31 

 CRX338A  1967 2006  -231 .56  -187 .42   -18 .40   -73 .39  -213 .36  -233 .36  -131 .36  -214 .34  -257 .34     0 .33  -141 .33 

 CRX338A  1968 2007  Lag from prior segment   1 years; insufficient 

      8 segments  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Number of segments 

       Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av 

 

     +0  8  .49  -213  7  .41  -188  7  .40  -214  6  .39  -114  4  .35  -115  3  .31   -47  3  .33    -1  3  .32 

      -251  3  .41 

 Chronological order 

       Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No 

      -251  3  -214  6  -213  7  -188  7  -115  3  -114  4   -47  3    -1  3    +0  8 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRX339A  1772 1811   166 .54   -83 .46   -13 .42   -47 .38   -50 .35   -85 .34   114 .33    59 .32   116 .30   -51 .29    13 .29 

 CRX339A  1777 1816   166 .47   -47 .44   -83 .42     0 .35   -84 .35   -13 .35   181 .34   114 .31    59 .30   -71 .30   -33 .30 

 CRX339A  1782 1821   181 .40     0 .39   -13 .34   -83 .33   -46 .33   -71 .33   166 .32    38 .31    59 .30    25 .29   114 .29 

 CRX339A  1787 1826     0 .46   -13 .42   166 .40   -71 .36    -2 .35    59 .33    76 .32   -29 .32   114 .31    12 .30   -46 .30 

 CRX339A  1792 1831     0 .47    -2 .38   166 .36    72 .35    59 .35   -13 .35   -54 .33    46 .32    30 .32   123 .32   -71 .31 

 CRX339A  1797 1836     0 .49   -54 .37    72 .36   166 .36   -13 .36    -2 .35     2 .34   -72 .32   -29 .31    46 .30    68 .30 

 CRX339A  1802 1841    -2 .42   -53 .38   -54 .37    99 .34    30 .34   -72 .32     0 .32   140 .32   -71 .30    72 .30     2 .30 

 CRX339A  1807 1846  -123 .39   -71 .37    93 .36     0 .34   -53 .33   123 .32   -54 .32   -15 .31    99 .30   -27 .30   -97 .30 

 CRX339A  1808 1847  Lag from prior segment   1 years; insufficient 

      8 segments  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Number of segments 

       Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av 

        +0  7  .40   -71  6  .33   -13  6  .37  +166  6  .41   +59  5  .32    -2  4  .38  +114  4  .31   -54  4  .35 

       -83  3  .40   +72  3  .34 

 Chronological order 

       Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No 

       -83  3   -71  6   -54  4   -13  6    -2  4    +0  7   +59  5   +72  3  +114  4  +166  6 

 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRX340A  1734 1773     0 .54    19 .45    44 .43   -40 .42    71 .42   141 .35   213 .35   211 .33   -18 .31   210 .31    20 .30 

 CRX340A  1739 1778     0 .54    44 .45   139 .39    19 .39   -18 .36    71 .35   -40 .35   -39 .34   -41 .33   -26 .33   141 .33 

 CRX340A  1744 1783     0 .48    19 .46   -58 .45    44 .45   -41 .42   -39 .37    84 .37    71 .36   119 .36   139 .35   -18 .35 

 CRX340A  1749 1788   -58 .44     0 .43   -39 .43    19 .42   139 .41    71 .41   -18 .40   119 .39    44 .38   -17 .34   -40 .32 
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 CRX340A  1754 1793   -18 .55     0 .45   139 .42   207 .34   100 .33   -40 .32    56 .32    19 .31   -41 .30   -59 .30    17 .29 

 CRX340A  1759 1798   -18 .45   100 .44   -22 .36   127 .35    78 .35    56 .33   207 .31     0 .29   -40 .28   -36 .28   -44 .26 

 CRX340A  1760 1799  Lag from prior segment   1 years; insufficient 

      6 segments  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 

Number of segments 

       Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av 

       -18  6  .40    +0  6  .45   -40  5  .34   +19  5  .41   +44  4  .43   +71  4  .38  +139  4  .39   -41  3  .35 

       -39  3  .38 

 Chronological order 

       Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No 

       -41  3   -40  5   -39  3   -18  6    +0  6   +19  5   +44  4   +71  4  +139  4 

  

          Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRX341A  1730 1769    27 .37   116 .35   126 .34   -17 .33    26 .33   128 .32    28 .30   198 .29   119 .29     1 .27   -42 .27 

 CRX341A  1735 1774     0 .47   -17 .43   162 .42   100 .40   119 .36     1 .31   230 .30    27 .28   128 .28   222 .27   -18 .27 

 CRX341A  1740 1779   100 .46     0 .43   -17 .40     1 .35   -43 .33   164 .32   162 .32   222 .31   181 .30   206 .29   119 .29 

 CRX341A  1745 1784   100 .48     0 .45   -17 .39     1 .34   222 .33   -58 .33   191 .32   123 .32   -43 .31   162 .30    84 .30 

 CRX341A  1750 1789     0 .43   100 .39    84 .38   191 .36   -17 .36   -43 .34   206 .34   179 .31    54 .30   -58 .30    27 .30 

 CRX341A  1755 1794     0 .50   -17 .38    84 .37   100 .35   123 .34   -43 .34   191 .33   179 .32   -25 .31     1 .30   -36 .30 

 CRX341A  1757 1796     0 .48   100 .40    84 .39   -17 .39   -25 .36   123 .36   -43 .35   -36 .31    35 .31   162 .29    12 .28 

      7 segments  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Number of segments 

       Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av 

       -17  7  .38    +0  6  .46  +100  6  .41    +1  5  .31   -43  5  .33   +84  4  .36  +162  4  .33  +119  3  .31 

      +123  3  .34   +27  3  .31  +191  3  .34  +222  3  .31 

 Chronological order 

       Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No 

       -43  5   -17  7    +0  6    +1  5   +27  3   +84  4  +100  6  +119  3  +123  3  +162  4  +191  3  +222  3 

 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRX346A  1740 1779   -34 .53    26 .51    24 .45    51 .42    63 .42     0 .42   188 .39   137 .39    -8 .35   108 .34   205 .32 

 CRX346A  1745 1784    26 .51   -34 .51    51 .47    24 .45     0 .44   -48 .41   188 .40    49 .39   137 .38   108 .38   193 .37 

 CRX346A  1750 1789     0 .52   213 .36   170 .35    51 .34   -36 .32    81 .32   118 .31   189 .31   119 .30   -59 .28    10 .28 

 CRX346A  1755 1794   -36 .43    82 .39   121 .37     0 .36   152 .32   119 .30   191 .30    22 .30   -26 .29   188 .28   189 .28 

 CRX346A  1760 1799    82 .45   152 .41   -36 .40   -19 .38   188 .37     0 .35   204 .35   121 .34   -20 .29   205 .28    36 .28 

 CRX346A  1763 1802   188 .49   -36 .39     0 .37   -19 .36   121 .35   -20 .34    82 .34   194 .33   204 .31   120 .31   152 .29 

      6 segments  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Number of segments 

       Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av 

        +0  6  .41  +188  5  .39   -36  4  .39   +82  3  .39  +121  3  .35  +152  3  .34   +51  3  .41  
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Chronological order 

       Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No 

       -36  4    +0  6   +51  3   +82  3  +121  3  +152  3  +188  5 

 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 

 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRX348A  1765 1804     0 .53   152 .34   -58 .34    -8 .34   186 .34    51 .30   169 .30   -46 .30   -22 .29   -36 .29   -77 .29 

 CRX348A  1770 1809     0 .49   -22 .41    51 .34   -58 .34   152 .34    -8 .33   186 .33   -77 .31    41 .29   171 .29   119 .29 

 CRX348A  1772 1811     0 .48   -22 .42   -58 .36    41 .34   162 .33   171 .32   186 .32    51 .31    -8 .30   -77 .30   128 .29 

      3 segments  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Number of segments 

       Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av 

       -77  3  .30   -58  3  .35   -22  3  .37    -8  3  .32    +0  3  .50   +51  3  .32  +186  3  .33 

  

Chronological order 

       Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No 

       -77  3   -58  3   -22  3    -8  3    +0  3   +51  3  +186  3 

 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRX349A  1745 1784     0 .42   -34 .42   169 .41   179 .37    72 .33    84 .32   111 .31   118 .31     7 .30   222 .30   215 .30 

 CRX349A  1750 1789     0 .52   -18 .41   169 .38   107 .35   111 .33   179 .33   118 .32    72 .32   100 .32   101 .29   -58 .28 

 CRX349A  1755 1794     0 .53   -36 .44   107 .40   179 .37   -18 .36   -70 .36   -58 .34   181 .33   191 .31   169 .30   152 .29 

 CRX349A  1760 1799   -36 .45     0 .44   107 .40   -70 .39   -58 .38   152 .38   -18 .36   195 .35   179 .33   111 .32   100 .31 

 CRX349A  1765 1804     0 .47   -36 .43     8 .39   127 .38   -70 .37   -18 .36   -58 .35   195 .34   100 .34   107 .34   160 .34 

      5 segments  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Number of segments 

       Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av 

        +0  5  .48   -58  4  .34   -18  4  .37  +107  4  .37  +179  4  .35  +100  3  .32   -36  3  .44  +111  3  .32 

      +169  3  .36   -70  3  .37 

 Chronological order 

       Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No 

       -70  3   -58  4   -36  3   -18  4    +0  5  +100  3  +107  4  +111  3  +169  3  +179  4 

 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRX350A  1761 1800   -70 .44    27 .42   107 .40     0 .39    88 .38    97 .37    29 .33   126 .32   145 .31   -19 .30   195 .29 

 CRX350A  1766 1805     0 .42    27 .39    29 .37   -70 .36    88 .35   -22 .34     8 .33    80 .32    96 .32   -12 .31    37 .30 

 CRX350A  1771 1810    27 .51     0 .42   -22 .36    37 .35   -70 .34   107 .34     8 .33    29 .32    59 .32    80 .30    96 .29 
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 CRX350A  1776 1815    29 .35   -22 .35   -59 .34   107 .34    59 .33   -60 .33    27 .32    12 .30     0 .29    80 .29    81 .28 

 CRX350A  1781 1820   -59 .44   -96 .44    59 .43     0 .43    12 .40   -60 .39    29 .38   -42 .34    81 .34    42 .33   -70 .32 

      5 segments  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Number of segments 

       Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av 

        +0  5  .39   +29  5  .35   -70  4  .36   +27  4  .41   -22  3  .35   +59  3  .36   +80  3  .30  +107  3  .36 

 

Chronological order 

       Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No 

       -70  4   -22  3    +0  5   +27  4   +29  5   +59  3   +80  3  +107  3 

 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRX351A  1889 1928     0 .56  -127 .55   -43 .49  -185 .37  -102 .37    43 .31    26 .31    77 .29  -173 .28   -29 .27   -86 .27 

 CRX351A  1894 1933  -127 .52     0 .48   -43 .47  -185 .38  -152 .35  -102 .34  -115 .32  -198 .31  -186 .31  -174 .30    26 .30 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRX352A  1892 1931     0 .43    64 .37  -185 .37  -127 .33  -173 .32   -43 .29  -102 .29  -115 .28   -51 .28    31 .28  -125 .28 

 CRX352A  1896 1935     0 .46  -173 .39  -127 .37  -185 .32    64 .31   -43 .30   -64 .30    65 .29  -115 .28  -102 .26   -26 .26 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 
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APPENDIX A9.  COFECHA dating adjustments for fire-scarred samples at CRT. 

PART 8:  ADJUSTMENTS FOR UNDATED SERIES: CRT                                                       15:58  Mon 09 Nov 2009  Page   2 

------------------------------------------------------------------------------------------------------------------------------------ 

 

 Time span  1684  2006   323 years, best matches for  40-year segments lagged   5 years 

 Listed in order from highest correlation 

 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRT304A  1834 1873   -16 .50   -49 .44     0 .42  -125 .40    52 .38    68 .36    23 .36    91 .34    27 .33    95 .32    90 .31 

 CRT304A  1839 1878     0 .45    27 .44   -49 .42  -125 .41   -16 .39    95 .38  -100 .36    74 .35    91 .35     4 .33    52 .33 

 CRT304A  1844 1883   -49 .50     0 .49    27 .44   -16 .42  -100 .39     4 .37  -158 .37    68 .36    90 .34  -125 .33    21 .32 

 CRT304A  1849 1888   -49 .53     0 .52    27 .43   -76 .39   -16 .38  -100 .37    21 .36     4 .36  -158 .34   -59 .31    23 .31 

 CRT304A  1854 1893     0 .55   -49 .52    27 .48  -158 .40  -100 .38  -122 .36    23 .36   -76 .35   -59 .33    91 .32    68 .31 

 CRT304A  1859 1898     0 .55  -100 .47   -49 .46  -158 .45    27 .38    91 .38    81 .36  -122 .36   -59 .36    72 .34   -99 .34 

 CRT304A  1864 1903     0 .51  -100 .46  -158 .45    81 .41   -88 .36    91 .36  -177 .35   -99 .35   -49 .35    23 .34  -159 .34 

 CRT304A  1869 1908  -100 .48     0 .48    91 .38   -75 .38  -158 .37  -177 .35    23 .34   -88 .34   -29 .33   -99 .33    27 .33 

 CRT304A  1874 1913  -129 .35  -187 .34    84 .34    53 .33  -127 .31     4 .31   -38 .30    -2 .29    67 .29  -145 .29  -146 .28 

 CRT304A  1875 1914  Lag from prior segment   1 years; insufficient 

      9 segments  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Number of segments 

       Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av 

        +0  8  .50  -100  7  .42   -49  7  .46   +27  7  .41  -158  6  .40   +91  6  .35   +23  5  .34    +4  4  .34 

       -16  4  .42   -59  3  .33   -99  3  .34   +68  3  .35  -125  3  .38 

 Chronological order 

       Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No 

      -158  6  -125  3  -100  7   -99  3   -59  3   -49  7   -16  4    +0  8    +4  4   +23  5   +27  7   +68  3   +91  6 

 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRT307A  1868 1907    79 .45   -12 .41  -141 .40  -148 .38  -170 .35    36 .34  -104 .34  -114 .33  -150 .32   -85 .32  -112 .31 

 CRT307A  1873 1912    79 .56   -14 .40  -170 .37  -112 .37  -141 .36    16 .35    48 .32  -159 .32   -53 .31   -61 .30  -150 .30 

 CRT307A  1878 1917    79 .66  -159 .53  -141 .41    48 .39  -116 .37   -16 .33   -41 .32   -15 .32   -14 .31  -112 .29   -59 .28 

 CRT307A  1883 1922    79 .53  -159 .50  -141 .45  -116 .38   -59 .38   -22 .38    15 .35   -15 .34   -71 .34   -89 .34    11 .34 

 CRT307A  1888 1927  -141 .57  -159 .49   -59 .44    79 .43  -116 .40   -89 .35  -133 .34   -22 .33   -16 .31   -53 .31   -14 .29 

 CRT307A  1893 1932  -141 .58   -22 .41   -59 .39  -112 .35    54 .35    15 .35  -161 .34  -195 .34   -53 .33  -201 .32  -159 .29 

 CRT307A  1898 1937     0 .56  -162 .41   -22 .39   -43 .37    15 .36   -51 .34  -125 .33   -41 .32   -53 .30    19 .29   -78 .29 

 CRT307A  1903 1942     0 .59  -162 .43   -78 .40   -22 .39    19 .36    51 .33   -41 .31   -51 .30   -53 .30    15 .29    63 .27 

 CRT307A  1908 1947     0 .62   -78 .43    19 .38  -162 .36    51 .33   -10 .33  -106 .31   -22 .30    10 .29   -49 .29  -220 .29 

 CRT307A  1913 1952     0 .72   -78 .46    19 .41    51 .40  -162 .37   -17 .37   -10 .31   -41 .31  -118 .29  -108 .29   -88 .28 

 CRT307A  1918 1957     0 .73  -162 .49   -17 .48   -78 .46    19 .39   -10 .35   -88 .34    41 .34   -49 .33  -101 .32  -133 .31 

 CRT307A  1923 1962     0 .65  -162 .51  -222 .41   -49 .37    19 .34   -97 .34   -10 .34   -17 .33   -78 .32  -133 .29   -74 .29 
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 CRT307A  1928 1967     0 .58  -162 .55  -222 .45   -97 .40   -49 .37   -10 .33    19 .32  -152 .31   -78 .30   -88 .30   -74 .28 

 CRT307A  1933 1972     0 .47  -162 .42   -49 .41  -198 .35   -97 .35  -222 .34   -17 .33  -127 .33   -10 .31  -114 .27  -152 .27 

 CRT307A  1938 1977  -160 .43  -215 .38   -97 .38   -49 .36   -60 .34  -127 .32    -7 .31   -17 .31  -187 .31  -144 .30  -147 .30 

 

CRT307A  1939 1978  Lag from prior segment   1 years; insufficient 

     15 segments  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Number of segments 

       Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av 

      -162  8  .44    +0  8  .61   -78  7  .38   +19  7  .36   -49  6  .35   -22  6  .36   -10  6  .33  -141  6  .46 

      -159  5  .43   -53  5  .31   -17  5  .36   +79  5  .53   -41  4  .31   -59  4  .37  -112  4  .33   +15  4  .34 

       -97  4  .37  -116  3  .38  -222  3  .40  -133  3  .31   -14  3  .33   +51  3  .35   -88  3  .31 

 Chronological order 

       Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No 

      -222  3  -162  8  -159  5  -141  6  -133  3  -116  3  -112  4   -97  4   -88  3   -78  7   -59  4   -53  5   -49  6   -41  4 

       -22  6   -17  5   -14  3   -10  6    +0  8   +15  4   +19  7   +51  3   +79  5 

 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRT308A  1823 1862   132 .44    68 .43  -119 .41   -59 .39    23 .37    29 .35   -84 .34    80 .33   -30 .33   -65 .32   -36 .30 

 CRT308A  1828 1867    68 .44     0 .42   -59 .41  -119 .38   132 .37    -8 .36    23 .35   -65 .34    29 .34   -84 .32   123 .31 

 CRT308A  1833 1872     0 .52  -119 .40   130 .39   -36 .38   -30 .35   -65 .33    97 .33   107 .33    78 .33   -59 .32  -118 .32 

 CRT308A  1838 1877     0 .49    68 .44   -73 .37   -30 .36    78 .34    48 .33   -19 .32  -118 .31  -110 .31  -119 .31    38 .31 

 CRT308A  1843 1882     0 .46    68 .43   -30 .40   -73 .38    89 .34    78 .34   -92 .34   123 .33  -127 .33   -65 .32   -90 .29 

 CRT308A  1848 1887  -161 .54     0 .45   -90 .41    37 .38    68 .36    89 .33   -92 .31   -30 .31    78 .31   -84 .31  -127 .29 

 CRT308A  1853 1892     0 .45  -161 .45   -84 .36    68 .34    37 .34  -101 .33   -90 .32  -102 .30    -6 .30   -30 .30  -110 .29 

 CRT308A  1858 1897   -39 .50    68 .38    26 .38     0 .35   -52 .35  -149 .33    49 .33   -90 .32    37 .31  -115 .30  -148 .30 

      8 segments  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Number of segments 

       Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av 

        +0  7  .45   +68  7  .40   -30  6  .34   -65  4  .33   -84  4  .33  -119  4  .37   -90  4  .34   +78  4  .33 

       -59  3  .38   +37  3  .34 

 Chronological order 

       Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No 

      -119  4   -90  4   -84  4   -65  4   -59  3   -30  6    +0  7   +37  3   +68  7   +78  4 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRT312A  1780 1819   -10 .54     0 .40   -96 .35    89 .34   -56 .34    41 .33    17 .32   154 .32   142 .32    15 .31   101 .30 

 CRT312A  1785 1824     0 .47    89 .46   -41 .37   -78 .37   -59 .33    60 .32   -76 .30    17 .30   -96 .29    82 .29   123 .29 

 CRT312A  1790 1829     0 .46    89 .39   -78 .36   -41 .35   -59 .33   -76 .31    17 .29    60 .29    43 .29   123 .28    82 .27 

 CRT312A  1795 1834    63 .42     0 .41   -41 .38   -59 .37    89 .37   -95 .36   -33 .35   -58 .32   131 .31    60 .31    41 .29 

 CRT312A  1800 1839     0 .49   -41 .44    86 .41   -59 .39   -58 .37    -6 .37    63 .36   -33 .32   -95 .31    82 .30   -55 .30 

 CRT312A  1805 1844   -29 .48     0 .46   -58 .44   -41 .41   -59 .37    82 .35    86 .33   -92 .31   133 .31   154 .31   -33 .30 
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CRT312A  1807 1846   -29 .52     0 .47   -58 .46   -41 .42    82 .38   -59 .38   -84 .37   104 .33   154 .32    86 .31    30 .31 

      7 segments  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Number of segments 

       Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av 

        +0  7  .45   -41  6  .39   -59  6  .36   +82  5  .32   -58  4  .40   +89  4  .39   +60  3  .31   -33  3  .32 

       +86  3  .35   +17  3  .30  +154  3  .31 

 

Chronological order 

       Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No 

       -59  6   -58  4   -41  6   -33  3    +0  7   +17  3   +60  3   +82  5   +86  3   +89  4  +154  3 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRT314A  1678 1717   142 .46    58 .45   180 .38   110 .37    24 .36    32 .35   273 .31    78 .28   249 .28   129 .28    51 .28 

 CRT314A  1683 1722    58 .46   142 .46   274 .39   159 .39   240 .37    24 .36   110 .36    50 .32   210 .31   136 .30    32 .29 

 CRT314A  1688 1727    58 .47   159 .45   142 .43     0 .41   210 .40   136 .40   130 .36    24 .34   249 .34   110 .33   274 .32 

 CRT314A  1693 1732   249 .47    58 .45     0 .42   159 .41   136 .39   250 .38    83 .35   143 .35   106 .34   274 .34   110 .34 

 CRT314A  1698 1737     0 .52   249 .50   159 .41   250 .40    83 .40   143 .37   136 .35    70 .34    58 .34   106 .34    11 .33 

 CRT314A  1703 1742     0 .70    70 .54   249 .46    83 .43   136 .43   143 .40   159 .39   110 .35    97 .35   106 .32    26 .31 

 CRT314A  1708 1747     0 .69   136 .47    83 .41   249 .40   143 .39    70 .39    97 .38   -19 .36    58 .35   159 .33   240 .30 

      7 segments  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Number of segments 

       Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av 

       +58  6  .42  +136  6  .39  +159  6  .40  +249  6  .41  +110  5  .35    +0  5  .55   +83  4  .40  +143  4  .38 

      +142  3  .45   +24  3  .35  +106  3  .34   +70  3  .42  +274  3  .35 

 Chronological order 

       Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No 

        +0  5   +24  3   +58  6   +70  3   +83  4  +106  3  +110  5  +136  6  +142  3  +143  4  +159  6  +249  6  +274  3 

 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRT315A  1858 1897  -165 .41  -100 .40   -16 .40     0 .39    48 .37   106 .37   -68 .35   -88 .35   -53 .34  -146 .34   -23 .33 

 CRT315A  1863 1902  -100 .53     0 .43  -126 .39   -16 .38   -23 .38   -89 .35    55 .33   -99 .33    82 .31  -107 .29  -145 .29 

 CRT315A  1868 1907  -100 .44     0 .43    63 .37   -23 .37    82 .36  -107 .33   -99 .32  -183 .31   -89 .31  -126 .31  -177 .30 

 CRT315A  1873 1912    63 .56    -5 .42  -107 .35   -89 .35   -23 .35   -99 .35  -167 .33   -70 .33  -148 .30    82 .29  -130 .29 

 CRT315A  1878 1917    63 .50    -5 .48  -167 .40   -32 .35   -89 .33  -148 .33  -107 .31   -23 .30    48 .28    82 .27    29 .27 

 CRT315A  1883 1922    -5 .44    63 .37   -32 .36    -4 .33   -89 .32    48 .30   -26 .30  -132 .29  -166 .26    58 .26  -148 .26 

 CRT315A  1888 1927  -132 .46   -89 .41    -4 .40    -5 .36    63 .36   -22 .34    48 .34   -59 .33  -149 .33  -169 .31  -201 .30 

 CRT315A  1893 1932  -132 .45  -158 .42    -5 .40  -201 .38   -92 .37    64 .37   -74 .37  -166 .36  -133 .34  -106 .34  -204 .34 

 CRT315A  1898 1937  -166 .42   -74 .40  -106 .39     0 .39  -158 .39  -132 .39  -204 .38  -121 .37  -133 .36  -203 .35    63 .34 

 CRT315A  1903 1942  -121 .41  -106 .41     0 .39  -132 .38  -158 .38  -133 .36  -203 .34  -216 .34   -22 .33  -204 .33   -68 .32 

 CRT315A  1908 1947  -106 .47     0 .45  -133 .42  -118 .37  -204 .35  -121 .34  -152 .31    48 .30    19 .30   -10 .30  -178 .29 

     11 segments  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 
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Number of segments 

       Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av 

       -89  6  .35    +0  6  .41   +63  6  .42  -132  5  .39   -23  5  .35    -5  5  .42   +48  5  .32  -107  4  .32 

      -106  4  .40  -204  4  .35  -133  4  .37   +82  4  .31   -99  3  .33  -148  3  .30  -166  3  .35  -121  3  .38 

      -158  3  .40  -100  3  .46 

 Chronological order 

       Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No 

      -204  4  -166  3  -158  3  -148  3  -133  4  -132  5  -121  3  -107  4  -106  4  -100  3   -99  3   -89  6   -23  5    -5  5 

        +0  6   +48  5   +63  6   +82  4 

 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRT316A  1857 1896     0 .45     8 .40    19 .37    39 .37  -145 .36   -99 .36   -76 .35   103 .35  -137 .35  -119 .34   -29 .34 

 CRT316A  1862 1901  -145 .51     0 .49  -127 .46   -76 .37  -119 .35  -100 .34   -99 .33   -29 .32    45 .32    55 .32   -27 .31 

 CRT316A  1867 1906     0 .53  -127 .48  -145 .45   -76 .38   -99 .36  -125 .36   -29 .33    45 .33    -6 .33  -107 .32  -159 .29 

 CRT316A  1872 1911     0 .53  -127 .50  -145 .36    45 .36   -29 .35   -35 .32    80 .31   -43 .30    -6 .30  -107 .29   -27 .29 

 CRT316A  1877 1916  -127 .56     0 .50    45 .41  -145 .39   -43 .34   -35 .33  -107 .31  -119 .30    87 .30   -27 .30  -133 .30 

 CRT316A  1882 1921  -127 .54    -6 .45     0 .42  -145 .41    45 .40   -43 .35    -4 .34  -119 .32   -35 .31  -107 .31  -133 .30 

 CRT316A  1887 1926  -127 .58  -203 .41    -6 .40  -107 .40     0 .39  -145 .36    45 .36   -43 .35  -170 .34    80 .32  -133 .32 

 CRT316A  1892 1931  -204 .63  -127 .54  -133 .43    -5 .42    -6 .41  -203 .39  -107 .38     0 .36    64 .36  -152 .35   -43 .35 

 CRT316A  1894 1933  -204 .62  -127 .54  -133 .42    -6 .42     0 .40    -5 .40  -203 .38  -107 .36   -43 .35    64 .34  -152 .34 

      9 segments  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Number of segments 

       Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av 

        +0  9  .45  -127  8  .52  -145  7  .40  -107  7  .34   -43  6  .34    -6  6  .39   +45  6  .36  -133  5  .35 

      -119  4  .33   -29  4  .34   -35  3  .32   -27  3  .30   -76  3  .37  -203  3  .39   -99  3  .35 

 Chronological order 

       Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No 

      -203  3  -145  7  -133  5  -127  8  -119  4  -107  7   -99  3   -76  3   -43  6   -35  3   -29  4   -27  3    -6  6    +0  9 

       +45  6 

 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRT317A  1869 1908     0 .46    12 .42   -99 .39    53 .38    20 .38    -7 .38  -145 .38  -125 .36  -107 .33  -178 .33    42 .31 

 CRT317A  1874 1913     0 .49    34 .46    53 .43  -118 .38    20 .35  -127 .32   -72 .31    44 .31    68 .31  -107 .29    -7 .29 

 CRT317A  1879 1918  -118 .41    53 .41    34 .37   -72 .37  -164 .36     0 .35  -178 .33   -42 .33    20 .32    87 .31  -143 .30 

 CRT317A  1882 1921  -118 .52    53 .43   -67 .42   -42 .37  -197 .36   -72 .33     0 .32  -126 .32  -178 .32  -143 .31  -103 .31 

      4 segments  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Number of segments 

       Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av 

        +0  4  .40   +53  4  .41   -72  3  .34  -178  3  .33   +20  3  .35  -118  3  .44 

 Chronological order 
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Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No 

      -178  3  -118  3   -72  3    +0  4   +20  3   +53  4 

 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRT318A  1872 1911     0 .49   -99 .45  -111 .44  -183 .42   -35 .41   -84 .40  -145 .38    68 .38    53 .37     4 .32  -119 .31 

 CRT318A  1877 1916  -111 .53     0 .50  -145 .42   -84 .41    53 .40   -99 .40  -183 .38    68 .35  -100 .34  -137 .33   -35 .32 

 CRT318A  1882 1921  -111 .53  -196 .49     0 .43  -100 .43   -84 .42  -183 .41    53 .41   -99 .39   -35 .38  -197 .38    16 .35 

  

 

 CRT318A  1887 1926  -196 .59  -100 .45     0 .43    68 .38   -41 .37     1 .34   -35 .33  -178 .33  -140 .33  -111 .32  -195 .32 

 CRT318A  1892 1931     1 .41   -86 .36  -100 .35  -157 .35  -140 .34    34 .33   -16 .31   -64 .30    68 .29  -178 .27   -41 .27 

 CRT318A  1894 1933     1 .49   -86 .36   -16 .35    34 .34  -113 .33  -100 .32  -161 .32    68 .31  -157 .30   -64 .29  -183 .29 

      6 segments  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Number of segments 

       Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av 

      -100  5  .38   +68  5  .34  -183  4  .37   -35  4  .36    +0  4  .46  -111  4  .45   -84  3  .41    +1  3  .41 

       +53  3  .39   -99  3  .41 

 Chronological order 

       Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No 

      -183  4  -111  4  -100  5   -99  3   -84  3   -35  4    +0  4    +1  3   +53  3   +68  5 

 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRT319A  1823 1862     0 .44   -84 .42    80 .41    37 .38     6 .33   129 .33   -59 .32  -136 .31    78 .30   -78 .30    35 .30 

 CRT319A  1828 1867     0 .57    37 .41   -59 .38   107 .37   -84 .37  -142 .34  -106 .32    80 .32   -30 .30    78 .28   129 .28 

 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRT319B  1839 1878  -155 .49    97 .41  -119 .40     0 .40   -13 .37    29 .35   -26 .35    80 .34    61 .34   -97 .33  -154 .33 

 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRT401A  1870 1909     0 .53  -102 .52   -48 .42  -145 .36   -61 .36    -2 .33  -119 .33  -127 .33    60 .32  -148 .31  -179 .31 

 CRT401A  1875 1914     0 .57    68 .39   -48 .37   -84 .34   -27 .33   -99 .30  -127 .30  -119 .29  -145 .29  -157 .29    41 .28 

 CRT401A  1880 1919     0 .57    68 .47    84 .42  -145 .38   -45 .34   -61 .33  -127 .32  -147 .32   -27 .31   -99 .29    41 .29 

 CRT401A  1885 1924     0 .54   -61 .40   -45 .36    68 .36   -38 .36  -127 .36  -181 .34    15 .32  -145 .32   -26 .30    32 .30 

 CRT401A  1890 1929     0 .59   -61 .48   -38 .40  -203 .39    68 .37  -147 .35  -145 .33   -75 .33    15 .31  -127 .30   -45 .30 
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 CRT401A  1895 1934     0 .54  -203 .40  -127 .36   -42 .36  -145 .35  -164 .34    68 .34   -61 .34   -86 .32  -149 .32    15 .31 

 CRT401A  1900 1939  -164 .52    17 .50     0 .46  -138 .40   -42 .38  -112 .38   -38 .38    42 .36  -127 .33  -145 .32    43 .28 

      7 segments  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Number of segments 

       Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av 

      -145  7  .34  -127  7  .33    +0  7  .54   -61  5  .38   +68  5  .39   -45  3  .34   +15  3  .31   -38  3  .38 

 Chronological order 

       Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No 

      -145  7  -127  7   -61  5   -45  3   -38  3    +0  7   +15  3   +68  5 

 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRT402A  1863 1902    90 .54  -175 .43  -123 .42    51 .37     4 .37   -63 .33  -160 .32   -39 .31    68 .31  -157 .31  -159 .31 

 CRT402A  1868 1907  -169 .43    90 .43   -39 .38  -159 .37  -123 .37   -63 .35    25 .34     4 .32   -72 .32  -175 .31  -160 .31 

 CRT402A  1873 1912   -51 .43  -123 .42     4 .42  -169 .42   -72 .39    36 .38  -159 .36    58 .34   -23 .33    90 .33    80 .32 

 CRT402A  1878 1917     4 .48    36 .44  -169 .41   -51 .41  -193 .40    19 .38   -32 .35    58 .34   -23 .33  -159 .33  -141 .33 

 CRT402A  1883 1922    19 .49     4 .45  -181 .42  -141 .39   -23 .38  -169 .38   -51 .37  -133 .36    58 .35   -32 .35    71 .35 

 CRT402A  1888 1927  -141 .54    19 .46  -133 .45  -170 .43   -52 .35    29 .35    38 .31   -32 .30   -26 .30   -82 .29     4 .28 

 CRT402A  1893 1932  -141 .50    19 .43  -170 .42  -133 .40    38 .37    29 .36   -52 .34   -26 .31  -178 .30   -82 .30   -34 .28 

 CRT402A  1898 1937  -133 .47    19 .46  -141 .39  -170 .38     6 .36    38 .35   -82 .35  -178 .33   -51 .31   -34 .30   -26 .29 

 CRT402A  1903 1942  -133 .45    19 .44     0 .39  -152 .35    38 .35   -26 .35  -141 .31  -153 .31  -170 .31     6 .30  -178 .30 

 CRT402A  1908 1947  -133 .56     0 .50    19 .48  -152 .39  -118 .39    38 .31   -45 .30  -189 .30  -141 .28   -30 .28    58 .27 

 CRT402A  1913 1952     0 .57  -133 .52    19 .41  -152 .35   -17 .34  -118 .33   -45 .31   -32 .31   -10 .31  -229 .31   -30 .29 

 CRT402A  1918 1957     0 .60  -152 .42   -17 .41  -133 .38   -10 .37   -68 .34  -144 .30  -229 .30  -230 .29  -211 .29    19 .28 

 CRT402A  1923 1962     0 .59  -152 .42  -133 .38   -68 .36   -17 .32   -10 .31  -230 .30  -190 .29  -144 .29   -32 .28  -170 .28 

 CRT402A  1928 1967     0 .56  -215 .36  -116 .35  -190 .34  -194 .32   -97 .32    35 .32   -72 .31   -68 .31   -10 .31   -32 .30 

 CRT402A  1933 1972     0 .59   -32 .45  -194 .38  -248 .38  -152 .35   -10 .35   -68 .33  -116 .33    26 .33  -144 .32   -74 .29 

 CRT402A  1938 1977     0 .62   -32 .45   -68 .42    26 .40  -152 .38   -10 .34  -194 .33  -195 .31  -204 .30  -248 .29  -116 .29 

 CRT402A  1943 1982     0 .54   -81 .39   -32 .37   -68 .34  -230 .34  -152 .33    19 .32  -195 .32  -103 .31  -248 .31  -196 .30 

 CRT402A  1948 1987     0 .49   -68 .46  -195 .44   -32 .38  -142 .37  -251 .36   -13 .36  -103 .36  -152 .31  -196 .30   -81 .30 

 CRT402A  1953 1992   -68 .46  -195 .45     0 .39   -55 .36  -196 .36  -142 .35   -13 .33  -222 .32   -96 .32  -239 .31   -81 .30 

 CRT402A  1958 1997   -68 .44   -13 .44  -142 .42  -163 .37  -272 .36   -26 .35   -55 .34  -195 .33  -165 .31  -130 .30  -273 .28 

 CRT402A  1963 2002   -68 .41   -26 .41  -195 .39  -169 .38  -272 .38  -163 .34  -130 .33  -239 .32   -24 .31   -55 .31     0 .29 

 CRT402A  1968 2007  -195 .43   -68 .40   -26 .39  -169 .38  -142 .37  -163 .36  -273 .34   -55 .34  -196 .29   -77 .29   -96 .29 

     22 segments  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Number of segments 

       Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av 

        +0 12  .51   -68 11  .39   -32 10  .35   +19 10  .41  -152  9  .37  -133  9  .44  -141  7  .39   -26  7  .34 

      -195  7  .38  -169  6  .40   -10  6  .33    +4  6  .38  -170  5  .36   +38  5  .34   -55  4  .34   -51  4  .38 

      -196  4  .31  -159  4  .34  -142  4  .38   +58  4  .32  -230  3  .31  -178  3  .31  -123  3  .40  -116  3  .32 

       -82  3  .31   -23  3  .35   -17  3  .36   -13  3  .38  -194  3  .34  -248  3  .33  -144  3  .30  -163  3  .36 

       -81  3  .33   -72  3  .34   +90  3  .43 

 Chronological order 

       Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No 
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      -248  3  -230  3  -196  4  -195  7  -194  3  -178  3  -170  5  -169  6  -163  3  -159  4  -152  9  -144  3  -142  4  -141  7 

      -133  9  -123  3  -116  3   -82  3   -81  3   -72  3   -68 11   -55  4   -51  4   -32 10   -26  7   -23  3   -17  3   -13  3 

       -10  6    +0 12    +4  6   +19 10   +38  5   +58  4   +90  3 

 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRT403A  1792 1831    63 .40    88 .39  -107 .39    53 .38    23 .38   -39 .36    90 .35   151 .35   175 .33   -73 .32   -95 .32 

 CRT403A  1797 1836    53 .44   -73 .33   -74 .32    61 .32    89 .32  -111 .31  -110 .29    87 .27    88 .27   -95 .27   -55 .27 

 CRT403A  1802 1841     0 .45   -73 .38    53 .38    61 .38   155 .37  -110 .35   156 .34   -74 .33    87 .33   -55 .30   -40 .30 

 CRT403A  1807 1846     0 .47   -73 .45    53 .40   156 .38    87 .38    61 .33   -95 .32   -40 .31   155 .30   -13 .29   -96 .29 

 

 CRT403A  1812 1851    53 .41   -40 .39    87 .37    11 .37     0 .36  -124 .34   -73 .33    61 .31  -125 .30    98 .30    57 .28 

 CRT403A  1817 1856     0 .58   -84 .47   -32 .38   120 .34   -59 .34    68 .33   -13 .32    80 .31    98 .31    57 .29   143 .29 

 CRT403A  1822 1861     0 .54   -84 .41    80 .34   -59 .33   -32 .33    68 .32   -46 .31   143 .31   -13 .30    98 .30  -106 .29 

 CRT403A  1827 1866  -142 .60     0 .52   -84 .43   -59 .34    68 .34    80 .33  -106 .32  -143 .30   -46 .30   -13 .30   -32 .28 

 CRT403A  1832 1871  -142 .56     0 .56   -84 .45   -59 .43    68 .39   107 .37    -6 .36  -143 .36  -106 .31   -32 .31   -46 .30 

 CRT403A  1837 1876     0 .58  -142 .48   -84 .45   -59 .43    68 .39   107 .36  -143 .34   -46 .33    -6 .32  -106 .31    56 .29 

 CRT403A  1842 1881     0 .52   -84 .47    68 .47  -142 .44    43 .38   107 .38   -59 .34   -46 .33  -109 .33   123 .30  -143 .30 

     11 segments  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Number of segments 

       Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av 

        +0  9  .51   -84  6  .45   -59  6  .37   +68  6  .37   -73  5  .36   -46  5  .32   +53  5  .40  -142  4  .52 

       -32  4  .32   -13  4  .30  -143  4  .32  -106  4  .31   +61  4  .34   +87  4  .34   -95  3  .30   +80  3  .33 

       -40  3  .33   +98  3  .30  +107  3  .37 

 Chronological order 

       Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No 

      -143  4  -142  4  -106  4   -95  3   -84  6   -73  5   -59  6   -46  5   -40  3   -32  4   -13  4    +0  9   +53  5   +61  4 

       +68  6   +80  3   +87  4   +98  3  +107  3 

 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRT404A  1819 1858  -102 .40     0 .36    35 .35    44 .33   -92 .32   106 .32   -56 .31    64 .31    28 .31  -120 .30    37 .29 

 CRT404A  1824 1863    28 .40    71 .36   -56 .36   -31 .33  -102 .33   -91 .31    35 .31     0 .30    44 .29  -109 .29    80 .27 

 CRT404A  1829 1868     0 .41   129 .38  -109 .38    39 .37   -79 .34   107 .34    -7 .32   -84 .32    35 .31   136 .31   -91 .30 

      3 segments  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Number of segments 

       Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av 

        +0  3  .35   +35  3  .32 

 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 
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-------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRT406A  1850 1889   -53 .60   113 .51  -136 .47   -66 .44   -78 .40   -70 .40    49 .37    19 .37    45 .34    23 .34    74 .33 

 CRT406A  1855 1894   -53 .52  -126 .40    19 .39   -66 .39  -125 .34    23 .32    -6 .31   -29 .31    68 .30  -107 .29  -165 .29 

 CRT406A  1860 1899   -53 .47    68 .46     0 .38  -107 .36    19 .34  -126 .34    87 .34   -29 .33   -66 .33   -82 .32     4 .28 

 CRT406A  1865 1904    68 .47   -53 .41   -23 .40     0 .37     4 .35   -82 .32    87 .32    19 .32  -178 .32  -126 .31    64 .30 

 CRT406A  1870 1909    68 .37  -125 .37     4 .37     0 .34  -107 .31   -53 .30   -66 .30  -178 .29  -140 .28  -145 .27   -26 .27 

 CRT406A  1875 1914  -141 .40  -178 .40    72 .37   -70 .36     0 .33     4 .32  -145 .31   -57 .30    73 .30    45 .29  -125 .29 

 CRT406A  1880 1919   -57 .42    72 .40  -141 .40    49 .34   -22 .33   -70 .33  -140 .32    73 .32  -145 .31  -178 .31    17 .30 

 CRT406A  1885 1924  -144 .43  -141 .43   -22 .40  -178 .37    27 .34     0 .33   -81 .33  -177 .32    17 .32     8 .32  -106 .28 

 CRT406A  1890 1929  -141 .50   -22 .43    27 .40  -144 .37   -89 .36     0 .33  -159 .32   -70 .31   -81 .30  -177 .29   -40 .29 

 CRT406A  1895 1934     0 .49  -162 .46   -22 .40   -62 .34  -199 .33    17 .33   -51 .32   -43 .32   -61 .31  -121 .31  -179 .30 

 CRT406A  1900 1939  -162 .55     0 .47   -22 .43    27 .40   -43 .38  -199 .36    51 .35    17 .34   -62 .32   -51 .32   -40 .31 

 CRT406A  1905 1944  -162 .54     0 .48   -22 .44    51 .38  -188 .37    27 .36  -199 .35   -51 .34   -78 .33   -43 .33    17 .32 

 CRT406A  1910 1949     0 .58  -162 .49  -188 .41   -22 .39   -78 .39  -187 .39  -199 .35   -51 .35    52 .34    51 .33   -70 .33 

     13 segments  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

  

Number of segments 

       Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av 

        +0 10  .41   -22  7  .40   -70  5  .35   -53  5  .46  -178  5  .34   +17  5  .32  -162  4  .51   -66  4  .36 

       -51  4  .33  -141  4  .43  -199  4  .35    +4  4  .33   +19  4  .35   +27  4  .38   +68  4  .40  -107  3  .32 

      -145  3  .30  -126  3  .35   -78  3  .37   -43  3  .34   +51  3  .35  -125  3  .33 

 Chronological order 

       Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No 

      -199  4  -178  5  -162  4  -145  3  -141  4  -126  3  -125  3  -107  3   -78  3   -70  5   -66  4   -53  5   -51  4   -43  3 

       -22  7    +0 10    +4  4   +17  5   +19  4   +27  4   +51  3   +68  4 

 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRT407A  1739 1778   119 .49   149 .40     0 .38   130 .37   181 .37   -35 .34    54 .34   101 .34    82 .31   -18 .30    23 .29 

 CRT407A  1744 1783   119 .44     0 .38   181 .35   130 .34   155 .34   149 .34    54 .30   213 .30   179 .30   -35 .30   138 .29 

 CRT407A  1749 1788   181 .39   155 .37     0 .36   119 .36   179 .35   -35 .35   191 .33    88 .30    52 .29   213 .29    71 .28 

 CRT407A  1754 1793     0 .47   179 .43   191 .38   155 .36    88 .36   181 .34    25 .34    52 .32    71 .32    -2 .29    27 .28 

 CRT407A  1759 1798     0 .46   191 .37   -58 .35    -2 .35   155 .35    52 .33    49 .32   127 .31   179 .30    -3 .30    88 .29 

 CRT407A  1763 1802    38 .45   136 .41   -60 .37   -58 .36     0 .36   -46 .35    -3 .33    24 .33    26 .33   155 .33   -48 .30 

      6 segments  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Number of segments 

       Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av 

        +0  6  .40  +155  5  .35  +179  4  .34  +181  4  .36  +119  3  .43   -35  3  .33   +52  3  .31   +88  3  .32 

      +191  3  .36 

 Chronological order 

       Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No 

       -35  3    +0  6   +52  3   +88  3  +119  3  +155  5  +179  4  +181  4  +191  3 

 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 



www.manaraa.com

145 

 

APPENDIX A9. continued  
 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRT407B  1833 1872   -92 .42  -109 .39  -100 .39     0 .37    74 .37   -83 .36    27 .34  -110 .33   -91 .33   -74 .32    48 .32 

 CRT407B  1838 1877   -92 .50  -109 .42   -63 .40     0 .37    74 .36    64 .36   -83 .35   -10 .33    27 .33  -100 .33   -66 .32 

 CRT407B  1843 1882   -92 .52   -63 .41    53 .41     0 .40    27 .37    68 .37  -109 .36   -23 .36    74 .35  -147 .35    38 .34 

 CRT407B  1848 1887     0 .47    68 .42   -29 .39    51 .37  -147 .35    70 .34   -23 .33    49 .33   -59 .31  -148 .30    27 .28 

 CRT407B  1853 1892     0 .49   -29 .45    68 .44    51 .39  -147 .37    49 .37   -23 .34   102 .33    70 .32  -148 .31   -53 .31 

 CRT407B  1858 1897   -29 .55     0 .47    68 .47    51 .46    19 .43  -111 .43    49 .41  -126 .35   -88 .32   102 .31  -171 .31 

 CRT407B  1863 1902   -29 .57  -130 .42    51 .42     0 .38    61 .37    19 .37    49 .37   -46 .36  -147 .35  -152 .33   -89 .33 

 CRT407B  1868 1907   -29 .61    51 .39   -76 .39  -147 .39     0 .39    49 .37    61 .37  -130 .37    19 .36   -46 .35   -89 .34 

 CRT407B  1873 1912    61 .47   -29 .44  -130 .40   -46 .40    49 .38    -7 .36   -76 .35  -147 .35     0 .33    51 .33    19 .31 

      9 segments  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Number of segments 

       Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av 

        +0  9  .41   -29  6  .50  -147  6  .36   +49  6  .37   +51  6  .39   +19  4  .37   +27  4  .33   +68  4  .42 

      -130  3  .40   -23  3  .34   -92  3  .48   -46  3  .37   +61  3  .40  -109  3  .39   +74  3  .36 

 Chronological order 

    

  Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No 

      -147  6  -130  3  -109  3   -92  3   -46  3   -29  6   -23  3    +0  9   +19  4   +27  4   +49  6   +51  6   +61  3   +68  4 

       +74  3 

 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRT411A  1784 1823   -97 .54     0 .46    31 .41    61 .40   -78 .39   101 .37   138 .35   -39 .34    70 .33   118 .33   152 .32 

 CRT411A  1789 1828   -97 .50     0 .49   152 .45   -78 .36    61 .34   107 .33   116 .32   174 .32   101 .32   -39 .31    31 .30 

 CRT411A  1794 1833     0 .43   -39 .42   140 .39    61 .35   -77 .35   152 .33   -76 .33    49 .31   128 .31   102 .30   118 .29 

 CRT411A  1796 1835     0 .47   -39 .46   140 .45   128 .39   152 .38   -77 .36   118 .30   -76 .29    -2 .28    61 .28    97 .28 

      4 segments  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Number of segments 

       Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av 

       -39  4  .38    +0  4  .46   +61  4  .34  +152  4  .37  +118  3  .31 

 Chronological order 

       Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No 

       -39  4    +0  4   +61  4  +118  3  +152  4 

 

 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 

           Counted       Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr      Corr 

 Series    Segment   Add  # 1  Add  # 2  Add  # 3  Add  # 4  Add  # 5  Add  # 6  Add  # 7  Add  # 8  Add  # 9  Add  #10  Add  #11 

 -------- ---------  --------  --------  --------  --------  --------  --------  --------  --------  --------  --------  -------- 

 CRT412A  1710 1749    37 .46     0 .44    12 .40   110 .39    92 .36   159 .36   208 .34   119 .34    41 .33    29 .32    66 .31 

 CRT412A  1715 1754     0 .47    37 .46   208 .36   167 .36    92 .35    29 .33   -17 .33    66 .33    80 .33   137 .33   129 .31 
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APPENDIX A9. continued  
 

 CRT412A  1720 1759     0 .48   232 .44    37 .41    29 .39   100 .35    92 .34   208 .34   129 .34   110 .33   137 .33   159 .31 

 CRT412A  1725 1764   232 .49    29 .46     0 .38   100 .36   208 .36   129 .34   110 .33    37 .33   148 .32   137 .31   159 .31 

 CRT412A  1730 1769   232 .49   129 .48    29 .37     0 .36    37 .35   148 .34    57 .34   110 .32    80 .32   201 .32   220 .31 

      5 segments  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Number of segments 

       Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av   Add No R_av 

        +0  5  .42   +29  5  .37   +37  5  .40  +110  4  .34  +129  4  .37  +208  4  .35  +137  3  .32  +159  3  .33 

       +92  3  .35  +232  3  .47 

 Chronological order 

       Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No   Add No 

        +0  5   +29  5   +37  5   +92  3  +110  4  +129  4  +137  3  +159  3  +208  4  +232  3 

===================  ========  ========  ========  ========  ========  ========  ========  ========  ========  ========  ======== 
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